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1 Preface

In this paper, we first construct an abstract chaotic algorithm based on the
fundamental framework proposed in [2], [18]. We then prove the convergence property
of the algorithm under realistic much receivable conditions and further present some
convergence rate estimates with respect to the structure of space decomposition and
the parameters of the inexact solvers. Finally, we apply the abstract theory to a
concrete chaotic algorithm called S-CR method [12,13] and show the convergence rate

can be estimated by 1 — (1 — \/ -7 +HC_“2’3(3;;‘(’79 B )™~1, where m is the number

of the subproblems, and w; and w, are the relaxation parameters, and H and h, the
diameters of the coarse and finite element triangulation. These results guarantee the
effectiveness of a number of chaotic algorithms when executed on message-passing
distributed memory multiprocessor systems.

2 Description of the Algorithm

In the following, we shall discuss iterative algorithms to approximate the solution of
a linear equation

Au=f (2.1)
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where A is a symmetric positive definite (SPD) operator defined on a finite dimensional
Hilbert space V with inner product (-,-) and induced norm || - ||. (2.1) usually comes
from the discretization of positive definite self-adjoint elliptic problem, with a proper
boundary condition, by finite element method, finite difference method, etc.

Let V be decomposed into m subspaces V; C V, 1 < ¢ < m, such that

and, for simplicity, let (-,-)4 = (4-,-) denote the new inner product on V with induced
norm || ---}{4. For each k, we define Qx, P, : V — Vi as the orthogonal projection
operators onto Vj associated with the inner product (-,-) and (-,-)4 respectively, and
define Ay : Vi — Vi by

(Akuk,vk) = (Auk,'vk), U,V € Vg. (2-3)

Ay can be regarded as a restriction of A on V; and is SPD in the inner product (- ,-).
It follows from the above definitions that

ArPy, = QrA. (2.4)

Then, based on the framework in [2],[18], we construct the following chaotic algorithm:
Algorithm A. 4% € V is an arbitrary initial value, assume u4*~! € V has been obtained.
Then u* is defined by

uF =P 4+ Ry Qe (F — AuPY). (2.5)

Here we have enumerated the iterative solution in time order, R; is the inexact solver
of the subproblem defined on V;, i.e. R; ~ Ai_l, R; is SPD in the inner product
(- ,+), and 7(k) denotes the subscript of the subproblem used at the kth step. We
assume that {7(k)}$° include i, infinitely many times; here i is an arbitrary natural
number, 1 < i < m. It guarantees that iterated sequence { u*} is corrected by using
the kth subproblem infinitely many times, which satisfies an intuitive convergence
r(la(}u]ir[er]nent. The above condition is named the admissible condition by L. Elsner et
al {7],[8].

Let E¥ = uF — u represent the error, then from (2.5) we have

E* = (I - Ry () Ar(y Pr(y) E* 1. (26)

3 Abstract Results

Let w = T08X1 <k <m P(BrAx), wi = minj<r<mp(RiAr), where p(A) denotes the
spectral radius of A. In what follows, we assume that 0 < w < 2. Then we have

Lemma 3.1 ([2],[18]) Under the above condition,

”I - RkAkPk”A <1 (3.1)
where 1 <k <m.
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Lemma 3.2 Let My =V} be any element of {Vi,}7*, (here {Vi e, is a finite set with
sum Vi, k =1,2,---,m as its elements) and let M, be the sumspace of any subset of
(e}, (Gie, My = Ziﬂ Vi, for a subset {V;,}\_, C {Vi}?, ). Let Capyp1, denotes
the positive constant, such that, for any v € My + My, there ezist v; € M;,i=1,2
satisfying that v = v1 + vz and [[lv1|% + lvall4] < C¥y,ag, 1014 Then we have

ol < Chnna UIPOIG +IP0IR), v e Mi+ M,

where P denote the orthogonal projection operators onto M; with respect to inner
product (-,-)a, 1 = 1,2, respectively.

This is just the variant of P.L. Lions’ Lemma [15].
Lemma 3.3 Let My = V), Ms, P} and Car, m, be defined as in Lemma 3.2. Then we
have .

wi(2—-w
I - RABIT = Pillla < 41~ 2= olla, o€ s + o
142

Lemma 3.4 Let Vi, and Vi, be any two different elements of { Vi }7-.;. Then we have

w1(2 —w
T = Rty Aso Pia I = Ry gy Pl < 11~ —%(C’%—k)llvllm v € Vir + Via)
182

where Cy, 1, denotes the constant Cyr, p, given in Lemma 8.2 for M; =V, i =1,2.
Because of the finite number of choices of My, M», Vi, and V4,, let o € (0,1) denote
the maximum value of , /1 — %éz——wl and , /1 — %1—(—22;1‘1)—
My My P
from Lemma 3.3 and Lemma 3.4, we have

Lemma 3.5 Let M; =V, be any element of {Vi}{,, M2 be the sum of any subset of
i}, and let Vi, Vi, be any two different elements of {Vi}7w,. Then we have

in all possible situations. Then

I~ RABNT - Pilolla < olvla, o€ My + M 62
IlI — Ri, A, P, I — Ry Ary PryJvlla < ollvlla, v € Viy + Vi,

Lemma 3.6 Let {t;,t2} be an arbitrary subset of {1,2,--,m}, then for arbitrary K

natural numbers oy € {t1,t2},k = 1,2,---, K, and {t1,t2} C {ou,02,- -, ak}, we

have

K
“ H(I - RﬂfleAak Pak)v”A < 0”””:‘1) vE th + Vtza (33)
k=1 :
where o is defined as that in Lemma 3.5.
Lemma 3.6 follows from Lemma 3.1 and Lemma 3.5 easily.
Lemma 3.7 For any integer | ( 2 < 1 < m), there ezists a constant o' € (0,1) such
that, for arbitrary subset {t1,ts, -, ti} C{1,2,---,m}, arbitrary oy € {t1,12,- -, 41},
k=1,2,--- K with {t;,t2,---,t1} C {oq,00, -, 0K}, we have
K K
I TIU ~ RowAai Pas)olla < llolla, v € Vi, (3.4)
k=1 k=1
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where 02 = o and ot =5 + (1 - 0)ot.

Proof. By induction. As I =2, the result follows from Lemma 3.6. Assume the result
is true for ! (2 <1 < m), we want to prove the correctness for I + 1.

For arbitrary {ti,ts,---,ti+1} C {1,2,---,m}, arbitrary ar € {t1,%2,  +,ti41},
k=1,2,---,K with {t1,%2, -, ti41} C {01,092, -, 0K}, v € 25:_;11 V4., consider
the estimate of Hle (I = Ry, Aa, Pa, )v. Without loss of generality, we may assume
that oy = t1, t1 ¢ {as,as,---,ax}. Otherwise, through a search process, we can
find some i(1 < 72 < K), such that {¢1,%2, - ,f141} C {ai,@ip1,---,akx}, and
o; ¢ {aiy1,q42, -, ax}. We might as well suppose that a; = t;. Then from
Lemma 3.1

K K
” H(I - RakAakPa’k)U”A < “ H[(I - RakAakPak)U”A
k=1 k=i

which is converted to the estimate of the case for which the assumption holds.
Let W = 2?;12 Vie, € = HkK=2 (I — RayAay Pay)v. Then from the induction
assumption, we have

K
lle = Pwavlla = Il TT(Z = RayAar Par) (v = Piwsv)lla < o'llv — Pyawlla,  (35)
k=2

where Py,. denotes the orthogonal projection operator from V onto W+ with respect
to the inner product (-,-) 4.

—p
Let n = lll—f,—n—P;VWi—:}E (n=0asv— Py.rv=0), then 0 <y <ot
Introduce the auxiliary function

1
v* = Pypiv+ —(e— Pyiv), {(n>0),
Wi 77( wiv), (n ) (3.6)

v =wv, (p=0).

It is easy to see that

1
[v*1% = S lle = Pwool% + | Pwevll? = o3,
4= 3 wivla + | Pwooliy = vl (3.7)

e=nv* + (1 - n)Pyrv*.
Then,

K
I H(I ~ Roy Aoy Poy Jolla = (T - Roy Ao, Pay)ella
k=1

= I = Ray Aay Po)[10* + (1 = 1) Py 2] 4
< llvlla+ (@ =nolvlla < [o + (1 - 0)o]|lv]|a.
The last inequalities follow from (3.7), Lemma 3.1 and Lemma 3.5. Here we also use

the fact that v* € V4, + W. Lemma 3.7 is now proved.
Let I = m, we get the following result:
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Lemma 3.8 For arbitrary natural numbers a; € {1,2,---,m}, i =1,2,---,K, and
{1725"'a m} C {alaaza"';aK}a

K
” H(I - RakAakPak)”A <o™< 1, (38)
k=1

where 6™ =1 — (1 - o)™"L,

Theorem 3.9 Assume that V is split into m subspaces {Ve}, such that V =
Zn:l Vi and the inezact solvers Ry are chosen to be SPD on Vi with respect to
the inner product (-,-) for respectively, k = 1,2,---,m, which also satisfy

0< lg}fmsxm p(RipAi) < 2.

Then Algorithm A is convergent. Furthermore, we have the following convergence rate
estimates, i.e. if the iteration is corrected in each processor at least once in some
iteration section, then the error will decrease according to the factor 1 — (1—-o)m1
after this iteration section, which is independent of the corrected times K and the
concrete structure of this section.

Theorem 3.9 follows easily from Lemma 3.8.

4 An Application

Let € be a polygonal domain in R?, for ease of exposition, and consider the problem

2
- Z az(a’zjaju) = f7 in Q:
i,j=1
w =0, on 91},

(“.1)

Here 9; = ;9%, and we assume that the matrix of (a;;)2x2 with continuously differential
coefficients, is symmetric for each z € Q and there exist two constants Cop, C; such

that \
Colél < ) ay(@)&; < Ciléf?, z€Q, ¢e R 4.2)
i,J=1

The variational form of (4.1) is

{u € Hi (D), 1 s
a(u,v) = (f,v), ve H;(Q).

Here a(u,v) = Zf =1 Jo aijO;udjvdz, and (- ,-) denotes the L2-inner product on
with induced norm ||.}].

Let {E;}2, be the coarse quasi-uniform triangulation of Q with size H, i.e., there
exist constants Cz, C3 not depending on H such that each triangle E; is contained in
(respectively, contains) a disk of radius C3H (respectively C,H). We further divide
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each E; into smaller triangles to form a quasi-uniform finite element triangulation
{K} ke, of Q with h as its diameter. Define

S*(Q) = {v € C°(D) : v|k is linear, K € Th},  Sg(Q) = SM(Q) N Hy(Q).

Then the finite element approximation of (4.3) reads as follows:

alun,0) = (f,0),  veV. (49

{uh esta) =V,
To give the chaotic algorithm in detail, we proceed to construct the following
subdomains {{;}7, :

QiZ{UEjZEani¢®,j=1,2,“-,m}, 1=1,2,---,m,

and define V; = H} () NV, i =1,2,---,m. Clearly, V = Ef_‘__l V;. Then we can apply
Algorithm A of section 2 to solve (4.4), this is referred to as the S-CR method!'2h{13lat
this time. Here, the linear operator A in (2.1) is defined by (Au,v) = a(u,v), u, vE€V.

Lemma 4.1 For the S-CR method, the constant Cp, pm, given in Lemma 3.2 can be
estimated as follows:

Com, SCA+H™ (1 + log—II}:—)2, (4.5)

where the constant C depends only on the constants Cy, Cy, C2, Cs given before and
the domain 2.

Proof. Without loss of generality, assume that M; = V; = SE (), My = Zlizl Vi
= S&({)), where Q; = U V;,, for any open set F, S*(F) = S*(Q) N HY(F), S;F) =
S* (F)n HE(F). Then M; + My = SH(Q; UQy). Let Q' = Q; N . Obviously ' is
formed by some coarse triangles in {E;}™,. For any v € M; + M, let

vila\a = ”l(zl\s'z'a Uzlﬁl\(y = ”'51\0"

The construction of v; on (¥ is relatively complex. Define F© as the interior points
set of F. For any coarse triangle E in V', if E C Q' \ (8 NOQY')°, let v |5 = v;
otherwise, E has at least one vertex on 803 N8, we then define Et, i = 1,2,3 as its
three vertices, Fj2, Fi3, Fag, the related edges; thus we have the following two cases:

(1). There exist two vertices, e.g. E2, E3 on 8Q; N 8. We first construct two linear
functions g(z), g1 (z) on E, such that, g(E?) = v(E?),i = 1,2,3, g:1(E!) = v(E?), g1 (E?)
= g1(E?*) =0; and then construct the following an auxiliary function % (z) € S"(E)
such that

a(@,w) =0, weSHE),
OBy, s =V — g, (4.6)
U|Byg = 0.
Finally, we define
vilg=g1+ 4. (4.7)
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(2). There exists just one vertex e.g. E3 on 89 N 8KY. Let g; be the linear function
on E such that g;(E*) = v(E?), i = 1,2, g:(E®) = 0, and let g be defined as above.
Let # be the auxiliary function in S*(E) such that

{“@,w) =0, weS(E), (4.8)

o =v —g.
Then we define v; on E as (4.7) too. Thus, we get the construction of v; on Q.
The function vs on €)' is defined as v — v1. From the definitions above, we know that

vi € M;,i=1,2, and v = v1 + vs.
Now we proceed with the estimate of Cyyz, ar,. Clearly it suffices to consider the term

2
/ [ Z a;;0;v10;v dz
E

i,j=1

for E belonging to the above two cases, since v;|g =v for other coarse triangle E. We
only give the estimate for case (1). From (4.2), (4.6), (4.7), the extension Lemma and
maximum norm estimates given in [1], [6], we know that

2
/[Z aijaivlajvl]dx
E

t,7=1
S C[”Vg]-”g,E + “U - 9”2352(1312) + ”’U - g“ZSAZ(EB)L (4‘9)

H _
IVailld, s < Clo(En)* < Cl(1 + logF)HVvllg,E + H?||vll§ 51, (4.10)
and o
2 2 1119 2
1o = 9212y * 10 = 91Pyags g < CLH o9 PIVoIR 5 (41D

Here the definitions of the Sobolev’s norms are the same as those in [1], [6]. From
(4.8)-(4.10), we obtain

2
H ; -
/ [3" aidwdjulds < O +1og 5 IVullg 5+ H il 6] (412)
E

f4=1
For case (2), the application of the above technique will lead to the same estimate
(4.12). Hence, from (4.2), (4.12) and Poincare’s inequality [1],[6], we finally have
H -
loill% = a(vr,01) < C(A+ logﬁ)2(1 +H ) loll%-

The Lemma then follows.
From Theorem 3.9 and Lemma 4.1, we easily have the following result:

Theorem 4.2 Let the subspaces Vi, be chosen as above, and the inezact solvers Ry, be
SPD with respect to the inner product (-,-)(L%-inner product) which also satisfies

= i < @ = .
0<w = min p(RrAr) Sw max p(ArFr) < 2
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Then the S-CR method is convergent. Furthermore, we have the following error
estimate, i.e. if the iteration is corrected at each processor at least once in some
iteration section, then the error will have decreased according to the factor 1 —

1- \/ 1-— —M——“’LH——)m‘l after this iteration section. Here, the constant C

Chaotic Iterative Methods

(T+H-2)(1+log X)2

is independent of H, h,wi,w and m.
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