CONVERGENCE ESTIMATES FOR MULTIGRID ALGORITHMS
WITH KACZMARZ SMOOTHING
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Abstract. We prove some estimates for the convergence of multigrid algorithms with Kaczmarz
smoothing applied to symmetric positive definite problems. To estimate the convergence of multigrid
algorithms, we assume some properties of smoothing procedure which are satisfied by Kaczmarz,
Gauss-Seidel, and Jacobi smoothing and are weaker than earlier assumptions. We use producst
formula for multigrid algorithm to show the V-cycle convergence factor is § = 1 — 'é'(ngl) The
theory is presented in an abstract setting which can be applied to finite element multigrid, Also,
numerical example is provided.

1. Introduction. Many authors presented various convergence analyses of multi-
grid methods which are often based on certain assumptions concerning the smoothing
process. These assumptions are sometimes verified for specific examples in {2, 5, 6].
In this paper, we provide a weaker assumption under which multigrid algorithms are
shown to converge.

Assumptions concerning the smoothing process which given in [6] are satisfied by
point, line and block Jacobi and point, line and block Ganss-Seidel smoothing but
not by Kaczmarz smoothing, for which the constant Cr the assumption (C.1) in [6]
grows with 1/h?. Instead, the latter satisfies a weaker condition introduced in this
paper.

The outline of the remainder of this paper is as follows. Section 2 describes the
basic multigrid algorithm in an abstract setting and gives some of the conditions on
the smoothers. In §3, we prove multigrid convergence under the weaker assumption.
Kaczmarz smoothing procedures are described and analyzed in §4. Some numeri-
cal experiments showing the Kacmarz smoother satisfies our weak assumption are
reported there. Finally, in §5, we discuss the finite element multigrid applications.

2. The Multigrid Algorithms. We assume that there is a sequence of nested
finite-dimensional inner product spaces My C My C ... C M; with (-,-)z. In
addition, we assume that there are symmetric positive definite operators Ay : Mg —
My for k = 1,...,5. We denote A(-,-) = (4;-,-);. The multigrid algorithm is an
iterative procedures for the solution of the problem on Mj;, Le., given f € M; find
© € M; satisfying

(1) A= f.

We define the projectors Pp_; : My — Mp_1 and Pr_1 : My — Mj_1 by, for
all ¢ € My_1, (P_1v,0)k-1 = (v,¢)r and A(Pr_1v,¢) = A(v, ), respectively. 17
and ‘#’ will denote adjoint with respect to (-,-)z and A(,-), respectively.
Also, we require a sequence of linear smoothing operators Ry : My — M; for
k=2,...,j. We shall always take Ry = A"
We set
7O - { Ry iflis odd,
k RT ifliseven

and set K = I — R Ag.
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We next define a multigrid process for iteratively computing the solution of (1).

Algorithm Set B = A7'. Assume that B_; has been defined and define Bjg
for g € My as follows;
1. Set v®* =0 and ¢° = 0. .
2. Define v fori = 1,2,...,m(k) by v' =v'~! + R;:"‘m(k))(g — AgviTh).
3. Define w™®) = ™) 4¢P where ¢¢, for i = 1,...,p, is defined by

qi = qi_l + BZ—I[PI?-—l(g - Ak’l)m(k)) - Ak_lqi—l].

4. Define w* for i = m(k)+1,...,2m(k) by w' = w'~! +R§;+m(k))(g—Akwi_1).
5. Set Big = w?m(k),
In the above algorithm, by defining B2g = w™®*), we get nonsymmetric multigrid
algorithm BP. From the above algorithm, fundamental recurrence relations for the
nonsymmetric and the symmetric multigrid algorithm are

T-BlAy = [(I-Py1)+(I - BP_ Ap_1)PP ] RO,
I-BiAr = (R{™)UI = Poox) + (I = Bi_y Aet)P Pt K™

on My where

Er(m(k)) — (KZKk)m(k)/z if m(k) is even,
k Kp(KpKp)m®-1/2 if m(k) is odd.

To estimate the convergence of multigrid algorithm, we need some conditions
concerning the smoothing operators. The conditions which were often assumed by
many authors ([1-7]) are
(C.1) Thereis a constant Cr which does not depend on k such that the smoothing

procedure satisfies

}‘1:1”'“”% < Cr(Ryu,u)g for all u € Mj.

Here, R; is either (I - K} ’k)A,;l or (I — Ky ',’g)A,;l. Ar is the largest
eigenvalue of Ay.
(C.2) Let Ty = Ry Apg. Thereis a constant § < 2 not depending on k satisfying

A(Trv, Tyv) < 0A(Thv,v).

But (C.1) is not satisfied by some smoothers, say Kaczmarz smoothing. Thus we
modify {C.1) as follows

(SM.1) There is a constant Cg which does not depend on & such that the smoothing
procedure satisfies

A2 (Agu, w)i < Cr(Riu, u)p for all w € My,

3. Convergence Estimates for Multigrid Algorithms. To estimate the con-
vergence of multigrid algorithm, we need some properties concerning the operator Ag
and the subspaces. These are as follows:

(0.1) There exists a sequence of linear operators Qy, : My > Mg fork=1,...,J,

with @; = I satisfying the following properties. There are constants C; and
C not depending on k for which
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@) (A;I(Qk — Qr—1)u, (Qr — Qr-1)u)r < Cl)\lzz(Aku,u)k fork=2,...,7,
A(Qru, Qru) < ChA(u,u) fork=1,...,j ~1.

THEOREM 1. Assume that (0.1) hold. Let Ry hold (SM.1) and (C.2). Let Bj be
defined by symmiric multigrid algorithm with p = 1. Then

(3) A((T - B;)v,v) < 8;A(v,v) for allv e M

hold with 8; =1 — gk where C' = [(1+ C3/*)(260/(2 - 6))/2 + (CRC1) /]2,
Proor. We observe that

I-BiA; = (I - By A;)*(I - Bl A;)
and for Ty, = (I — (R{™*)) P, that
(I - BjA;)" =T =T)I - Tj1)--- (I - T1).
To use a product analysis, we set Eg = I and Ey = (I — T})Ej—;. We get

Alu,u) - A(Eju, FEju) = j: [A(Ep—1%, Ex—yu) — A(Egu, Exu
3 i k=1
= 1 AT = T}) Ej—yu, Ty B 1 u).

Note that I — BI'A; = E7 and hence the inequality (3) will follow if we show that
J
(4) Aw,w) < C( = 1)y A((2] = i) Ey_yu, Ty Br_yu).
k=1

From the fact that Q; = I, we get

A(w,u) = Y A(Br_yu, (Qr — Qr-1)u) + Alu, Qru)
(5)
+ DA - Beox)u, (Qr — Qe1)u).
k=2

For the first sum on the right-hand side (5), from (0.1) and (SM.1), we see that

A(Br_1u, (Qr — Qr—1)w) Z(AklAZPkEk 11 (Qr = Qr—1)u)z
k=2

A(AkPkEk_lu,AkPkEk_lu)l/z - (A;l(Qk - Qk_l)u, (Qk - Qk_l)u)iﬁ

M-

.
||

IA
l M“-N

k=2 »
J
< (0301)1/2A1/2(u,1L) ZA1/2((I — KiKy) PLEp1t, Py Ep_1u)
k=2 j 1/2
< (CRcl(j - 1))1/2A1/2(u,u) (Z A((I— B’;Ifk)PkEk_lu,PkEk_l’u.))
k=2

The remainder of proof is the same with the proof of Theorem 4.3 in [6]. O
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4. Smoothing Procedures in Multigrid Algorithms. We define the mul-
ticative smoother(Gauss-Seidel smoother) by the following algorithm.
Algorithm 4.1. Let f € My, we define Ry f € My as follows;
1. Set vy = 0.
2. Define v; for i = 1,...,1 by v; = v;_1 + A;%Qﬁc(f —~ Agv;_1) where Ag; is
an i-th diagonal element of Az and Q% is a projection onto span{e;} with
respect to (-, )g-
3. Set Bpf =
Let P} is the projection onto span{e;} with respet to (Ag-,-). It immediately
follows from the identity Ay ;Pi = Q% Ay that K = (I—P})---(I— P}). It was shown
that Gauss-Seidel smoother satisfies (C.1)([6]).

Theorem 2 Let Ry be a smoother which satisfy (C.1). Then R; satisfy (SM.1).
Proor. Let u = Apw, then (C.1) becomes

A;l(Akw,Akw)k < Crl{Arw,w)g — (AKrw, Kpw)g).

From the fact, for all w € My, (Agw,w)r < Ap(w, w)k, (SM.1) is satisfied. |
Kaczmarz smoother is defined by the following algorithm.
Algorithm 4.2 Let f € M. We define By f € My as follows:

1. Set Ug = 0.

2. Define v; fori=1,...,1 by v; = v; — a—%ﬁ;(aﬂzi_l — f;) where al = it row
of Ag. '

3. Set R f = ;.

From the above algorithm, we know that

T AT e
o - ! 1) 0ty _ A Q) Ar
(6) Ky=1I—RyAy=(I—BL)---(I — B}) where B} = 2Tas = CLoA)s

Let S: be the projection with respect to ((AxAT)-,)p. Then we get (ArAT)uSE =
QL(ArAL). From Bi = ATSIA.T, (6) becomes Ky, = AL(I — SL)--- (I — Sha;T.
Above presentation reflects that Kaczmarz iteration can be regarded as a Gauss-Seidel
iteration applied to ApAfu = f. In fact, from Gauss-Seidel iteration, we know that
(I-8%)--(I~8)=I—(D+ L) (AxAT) where AyAT = D + L+ L7. Therefore
Ky =1~ A}IJ(D + L)—lAk.

Numerical verification of (SM.1) and (C.2). We consider an elliptic partial
differential equation of the form

@ ~Xhadh (w@E @) = 1@ B
v(x) = 0 ondQ

where () is a unit square and (a,ij)f-’ j=1 is a symmetric positive matrix.

To obtain A, we discretize by quasi-uniform triangular element with hy = 2%
and define M, to be the set of piecewise linear functions which vanish on §¢.

First, for (a;;) = I, we calculate Cg’s in (C.1) and (SM.1) of damped Jacobi with
w = 0.8, Gauss-Seidel, and Kaczmarz smoothing.



K. Seok Kang and D. Y. Kwak 231

Jacobi Gauss-Seidel Kaczmarz

h (C.1) (SM.1) (C.1) (SM.1) (C.1) (SM.1)
1/8 1.409707 | 1.409707 | 1.118052 | 1.118052 2.281606 | 1.349255
1/16 | 1.519271 | 1.519271 | 1.123504 | 1.123504 8.349859 | 1.371804
1/32 | 1.551332 | 1.551332 | 1.124665 | 1.124665 32.667680 | 1.376693
1/64 | 1.559570 | 1.559776 | 1.124900 | 1.124900 | 129.937300 | 1.377789
Table I

Table I show that Kaczmarz smoother does not satisfy (C.1).
Next, we calculate Cr in (SM.1) and 6 in (C.2) of Kaczmarz smoother for other

(ai)’s.
I p(z)! q(x)
D Cr 7 Cr 7 Cr 7
1/8 | 1.349255 | 1.496815 | 1.321122 | 1.455358 | 1.322647 | 1.460811
1/16 | 1.371804 | 1.516820 | 1.342990 | 1.479987 | 1.341607 | 1.483321
1/32 | 1.376693 | 1.522054 | 1.356463 | 1.495506 | 1.353792 | 1.497318
1/64 | 1.377780 | 1.523371 | 1.364844 | 1.505585 | 1.361640 | 1.506282

Table II
Here p(z) = €%22%0-7Y and ¢(z) = diag(e®2*+03%, 7 4 0.5).

5. Finite Elements Applications . We shall consider the problem of approx-
imating the solution v of (7). The form A corresponding to the above operator is
given by

ov dw
Afv,w) Z / a“'a';_,-aTT,Ljd”’ for all v,w € My.
i,j=1

Clearly, U € H(Q) is the solution of
A(U,0) = (F,0)  forall § € HI(Q).

By positive definiteness of {a;;}, || [|a = AY/2(-,-) is a norm on H}(f2) and this
norm is equivalence to || - [|; which denote H*(2)-norm.

We let 71 be a sequence of quasi-uniform triangulations of size b for k= 1,..., 7.
We define Mj as in the previous section. Since £ is polygonal, the subspaces are
nested.

Let {yi} be the collection of nodes corresponding to the triangulation for M.
Let (u,v)r = h2 >, u(yd)v( Jk) Note that the quasi-uniformity of the triangulations
implies that the norm || - || is equivalent to the L? norm on the subspace Mg. The
operator Ay, k=1,...,], are then defined by, for all ¢ € My, (4w, d)r = A(v, ).

Let Qy denote the L?(Q) projection onto My. We know that, since the triangu-
lations are gquasi-uniform and inverse property, for all v € H(Q),

(8) (T = Qe)vll < ehallolls  and  {|Qxv]ly < Clivl)s.
From (8) and definition, we get

(A7 Qr — Qr—1)v, (Qk—Qk 1))k

_ (Qr = Qr-1)v,u)* _ sup ((Qr = Qr—1)v, (% — Qe—1)n)?
o T Ted SEE T
o @ Qe P = ol _ il enilul
werty (Agu, )i - elld

< Chi(Aww, o) < C’)\k (Arv,v)g
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since [[(@Qr — Qr-1)v[| < |(T = Q)| + |(I = Qr—1)v|| and X\x = O(h;?). Combining
(8) and (9) shows that (0.1).

8]

9
(1]
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