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1. Introduction

The domain is made of two parts; In one part, the flow obeys the Navier-Stokes
equations. In the second part, the flow is potential and driven by Darcy’s law. On
some parts of the interface between them, the fluid flows into both sides under the
control of the threshold to the potential of friction type. This threshold describes
the effect of surface tension of the fluid in capilaries which are regularly arrayed in
the neighbourhood of the boundary. We show how this problem is formulated by a
variational inequality: existence of solution, approximation by means of fictitious
domain method via singular perturbations and numerical simulations are studied
and presented.

2. Formulation

2.1. The geometry

The problem is discussed in R?. The geometry is the rectangle (0,L)} x (0,a)
for the Navier-Stokes part and the rectangle (0, L) X (a,2a) for the Darcy part,
which we denote by Qy and Q; respectively. (0,L) x {a} is an interface between
Qo and Q,, which we denote by v . The Darcy boundary is the upper horizontal
oune plus the halves of the vertical one, the union of which we denote by I'y.

The Navier-Stokes boundary is composed of the inflow boundary T';, and the
outflow boundary I',,:, which are the remaining two halves of the vertical bound-
aries, and the lower horizontal boundary T',,.

2.2, Notations

p: pressure (p=px in Oz, k=0,1)

u: velocity (u = u in Q, k =0,1)

¢ : potential for the flow in &1 ( ¢ = p1 + pgz2, pg=1)
n : unit outward normal vector to the boundary of £
7y : unit outward normal vector to the boundary of £;

v : effective viscosity (inverse of Reynolds number)

k : permeability coefficient of the flow in

¢ : resistance coefficient of the flow in 4 (inverse of k )
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gn : threshold parameter ( > 0) controlling the occurence of penetration on v

f : external force acted in Qg ( f = fo — Vaz2 )

B : velocity profile of Poiseuille type defined on Ty,

€ : singular perturbation parameter ( > 0 )

Uy, : normal component of u

ug : tangential component of u

S = u%‘%& — po + py @ difference between normal stress of the flow in Qg and
pressure of the flow in 4

Sy = 8% : tangential stress of the flow in Qo

an
X : characteristic function of 23 in Q.

2.3. The model problem

The model problem is described as follows

Find
{ upg in Qg,
U =
Ul in Ql
and
_ { Do iIl Qo,
b= p1 In
such that
(21) — VAU,O -4 (’LL[) - V)Uo + Vp() = f in QU
(22) V- Uy = 0 in Qo
(23) cu; + Vpl = -V T9 in Ql
(2.4) Vour =0 in &
(2.5) |Sel < gn on v
(2.6) gn |un|+ Sn-un=0 on ~
2.7 S;=0 on v
(28) Ugn = U3n OI 7Y
(2.9) up = on [in
{2.10) up=0 on T,
Otgr
(2.11) v _py =0 on Tour
on
(212) Ut =0 on rout
(2.13) Ui, =0 on T7;.

Hereafter we denote (2.1) - (2.13) by (PDEF).

Remark 2.1.  The physical meaning of (2.5) and (2.6) is following [1], [3] .
(4];
I [Sa| < gn ,thenu, =0on v,

I |Sn] = gn , then up =0 or up # 0,5, - un <0 on 7.
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Oune easily check that
(i) un — 0 as gn — +o0;
(i) S, —+0 as g, —0.

Remark 2.2. Let us note that (2.2), (2.11) and (2.12) mean 2g2 = 0.
Then (2.11) becomes py =0 .

Remark 2.3.  Obviously we see
(2.14) ug = —kV¢ in Q .
Substituting (2.14) into (2.4), we have
(2.15) A¢g=0 in Q .

(2.8) and (2.13) mean

d9

(216) . _k-é; = Upn ON Y
d¢

(217) 5—7;——0 OIlPl .

Furthermore, ¢ satisfies the related one with respect to (2.5) and (2.6) on « .
Here we should note that the solvability of the problem (2.15), (2.16) and (2.17)
leads to f7 Ugp ds =10 .

If one solves this problem, the solution ¢, obtained has inevitably an uncer-
tainty of the constant .

Let normalize ¢¢ such that ffh ¢o dr = 0 and let represent ¢ as the
solution of the coupled system (PDEF) by ¢ = ¢¢ + d , where d is an unknown
constant to be determined according to (2.11). One method to fix d is shown in
the algorithm solving (NM);.

3. Reformulation by variational inequalities
3.1. Coupled formulation

Define

ag(u,v) = A Vu - Vv dz,
k

(u,v)k::/ u-vdr fork=0,1
Q

and

J{v) =[/ Gn |vn] dT .

Let Koo ={vjv=p8 onli, v=0 only, v: =0 on Douw } NV HL(S)
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where H1(€) is the solenoidal subspace of H'(£) for vector functions and P =
HY(Q1) = Po + {1} where Py = {n€ H' (1) | fo, ndz =0} .

If we couple (2.1), (2.2) and (2.15) under the boundary conditions prescribed
on v, we have

Find u € Koy and ¢ = ¢ +d € P ( ¢o € Py, d € R) such that

(3.1) Vao(u,v—u)—l—J(v)—J(u)—l—((u-V)u,v—u)o

2—/; ¢(vn—un)dI‘—|—fya(vn—un)df—(f,v——u)o, Vv € Ky,

(3.2) k(Vo, Vi =/ u,ndl', ¥YpeP.

~

We denote (3.1) and(3.2) by (VIF);.

Remark 3.1. When the Reynolds number is sufficiently small, the existence
and uniqueness theorem on (VIF); is obtained .

Remark 3.2. If we use the fictitious domain method stated in [2], (3.1) is
approximated by singularly perturbed problem defined in . In this case, {3 plays
a role of the fictitious domain in place of the Darcy part.

3.2. Uncoupled formulation
Let

Ko,={veLZQ)NHXQ)|v=p8 onTi, v=0 onTly,

v =0 on Tout, vy =0 onTy }.
Where L%(Q) is the solenoidal subspace of L#(§2) for vector functions.
Find u € K, such that

(3.3) vag(u, v —u) + J(v) — J(u) + ((u -Vu,v ~ u)o +(cu,v—u)
2 (ng - u)() - (Vfl}z,’l) - u)l s V’U S Ka' .
We denote (3.3) by (VIF), .
Remark 3.3. One can check the equivalence relation among (PDEF), (VIF),

and (VIF), and the unique existence of the solution of (VIF), by use of the
standard arguments in the theory of the variational inequalities [3] .
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4. Singularly perturbed approximation for (VIF),
Define
3oy = [ gn tun) ds,
¥

where () = fot tanh(2) ds.
Let
IF(V,,: {vGHi(Q)[v:,Bonl“;n, v=0 onTly, v+=00nTu, v=00nTq }.

Find v € K, such that
(4.1) v ap{u,v—u)+ea(u,v—u)+ ((u-V)u,v—u)O—}—Je(v)——Je(u)+(c U,V —1U)y

2 (f,’lJ—'Ll,)g _—(Vw%v'"'u)lv Vv ei{d-

We denote (3.4) by (VIF),, which reduces to the following formulation (PDEF),
[6 :

(4.2) —v Aug + (1 - V)ug 4+ Vpo = f  in Qy,
(43) V- Ug = 0 in Qo,
(44) —e A Uy + cuq + Vpl = —Vm2 in 91,
(4.5) V-ouy =0 infly,
6u¢m auln Un
(4.6) v I —py=¢€- = —pi+gntanh(—=) ony
a 0

(4.7) . g: = e g;t on v
(4.8) up =u; ony
(4.9) =0 onlyy
(4.10) ug=0 on T,
(4.11) : B;Z" —po=0 on Ty
(412) Ugs =0 omn Tout
(4.13) uy =0 onTy.

Remark 4.1. By virtue of a well-known arguments, we see that (VIF)a
has a unique solution u, in K, , when the Reynolds number is sufficiently small.
Let € — 0, then there exists ug in K, such that

Ue — ug in Hy(Qg) weakly ,
ue — ug  in L2(Qy) weakly
and ug satisties (VIF)y (see[2],15], [7])-
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5. Numerical models
Here we present two types of numerical model for (PDEF).
5.1.
(VIFY), leads to the one numerical model by itself, which we denote by (N M), .
5.2.

Tf we apply the distribution theoretic approach to fictitious domain method for
Neumann problems [2] to (PDEF). , then we have the other numerical model
(NM); asfollows ;

(5.1) =V-{v(1—x)+ex}Vu+(1— x)(u-Viu+exu+gn -tanh(uTn) -Vx+Vp
=(1-x)f—x Vzz in,

(5.2) V.u=0 inQ
and u satisfles (4.9)-(4.13).

6. Numerical results

We state an algorithm to solve (NM); .

Algorithm

Step 0. Put the initial guess of ¢ to be ¢° =0 in OQ; .

Step 1. Solve (3.1) of (VIF); by putting ¢ = ¢o .

Let the solution obtained be u® and p° .

Step 2. Compute §° = f7 u® ds (L is the length of 7 ).
Step 3.  Solve (3.2) putting u, = u) —&° on~.

Let the solution be ¢! and normalize it as 215\1/ eP .

Step 4. Replace ¢ in (3.1) by Zf + k', where k! =§°.
Then return to Step 1.

Remark 6.1 In the n-th iteration, k™ is defined as follows ;
n-1
Bt o= kT = Y 6
e

Where 6 = + f7 ul ds, (=0,1,---,n—1).
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Numerical experiments showed the following asymphotic property of 6" and
k"
" —=0 (n—co),
and
E"—=d (n— o)

where d is a constant to be found out.

Remark 6.2.  As the resolution of (3.1) in (VIF);, we adopted to solve the
approximate equations stated in the Remark 3.2.

Finally several numerical results based on (NM); and (NM); are shown in the
following. Figures 1 and 2 show the numerical results obtained by use of (NM),
and (NM), , respectively. Figure 3 shows the numerical result of the case that
there is a tiny hole at (L, 2a) , which was obtained by use of (NM); .
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