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INTRODUCTION

The numerical simulation of viscous flows past realistic configurations using time-
dependent compressible Navier-Stokes for high Reynolds numbers requires a large
amount of computing time [cfd94]. Although steady-state solutions of a compressible
inviscid flow past over a complete aircraft described by the Euler equation can be
obtained in just a few minutes time, modelling 3-D unsteady flows to understand
the aerodynamics of a complete aircraft is still a grand challenge. With the limits of
computing resources, it is important to develop efficient numerical techngiues which
are suitable for implementation on parallel computers and for engineering design
purposes.

One such technique relies upon a problem partitioning concept.. The concept in
relation to viscous flows past over obstacles was originally observed by Prandtl [Pra04],
of which the following two observations are involved. When a viscous fluid flow past a
solid boundary, tangential and normal components of the velocity must both equal to
the components of the velocity of the surface, and fluid sticks to the surface. For an
ideal inviscid fluid, only the normal components are equal and there is no restriction
on tangential slip of fluid relative to the boundary. The fundamental differences lead
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to the idea of a boundary layer first proposed by Prandtl. It is a thin layer of fluid
adjacent to the solid surface within which viscous effects are dominant and that such
effects become negligible outside the thin layer. Hence it is valid to divide the flow
region into two parts, i.e. the boundary layer and the inviscid flow outside the layer.

Mathematically, one uses either the Navier-Stokes equation or one of its reduced
form for flows within the boundary layer and an inviscid model described by either
the Euler equation or the potential equation outside the boundary layer. Numerically,
such problem partitioning is often referred to as the zonal method [Sch86]. There are
two zones namely, inner and outer, with the inner zone being described by the thickness
function ¢. The inner zone is governed by the Navier-Stokes equation and the outer
zone is governed by the Euler equation. Due to the amount of computing power, one
current industrial practice is to solve a reduced form of the Navier-Stokes equation in
the boundary layer and then coupled with a compressible potential model outside the
boundary layer. The coupling is obtained by means of an iterative technique sinilar
to the one developed by Schwarz [Sch90] for elliptic problems.

One property of the zonal method is that a prior knowledge is required for the
partitioning of the flow field. Hence there is a jump of mathematical models being used
in different zones. It would be useful to have a dynamic zonal recognition capability
with a smooth transition from one model to another model. It would also be useful
to minimize the thickness function ¢ such that accuracy obtained by means of the
Navier-Stokes equation for viscous flow simulations can be retained.

In this paper, a summary is given of various truncation techniques, including the
scalar truncation method used by Brezzi [BCR89]. An extension is given of the scalar
truncation method to the Navier-Stokes equation in the context of a finite volume
method in order to build a dynamic zonal recognition capability into an in-house
cell-centred finite volume multiphase software UIFS [Cho93].

TRUNCATION TECHNIQUES

Truncation methods have been around for a long time. It has been used, in a different
form, for the determination of local hyperbolic and elliptic regions in a plane transonic
flows for shock location [MCT71] or local adaptive mesh refinement for shock capturing.
This Section describes two frequently used truncation techniques related to flows past
an obstacle.

Prandtl’s truncation

Prandtl introduced the idea of boundary layer by neglecting the effect of viscosity
outside the thin layer next to a surface. One assumption to implement the idea in 2-D
incompressible viscous flows past an obstacle described by
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where ¢ = u,v and u = (u,v)7 is u >> v. The assumption leads to the boundary layer
equations as described by

V.u=0 (3)
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There are other assumptions which reduces the 2-D incompressible viscous flow model
to other turbulent boundary layer models [Kno86] or models suitable for regions with
separations and wakes [GWBT73] [Rau75|.

Scalar truncation

Early work involving the concept of a scalar truncation technique can be found in
Perkins and Rodrigue paper related to a dynamic zonal recognition process for viscous
Burgers’ equation [PR89]. The idea is to implement in a finite difference context
rather than the manual truncation technique as used by Prandtl. Finite difference
representations of the viscous term at various grid points across the whole flow domain
are calculated, a viscous region across the flow domain can then be masked out
leaving the rest of the flow domain consists of an inviscid region at least numerically.
One disadvantage of this method is that the viscous term is calculated across the
whole computational domain which is extremely ineffective. Also the method does not
provide a smooth transition from one mathematical model to the other, and hence the
solution is not necessarily smooth across the boundary of the models. An improved
version was introduced by Brezzi [BCR89] such that the transition of the viscous term
from the viscous region to the inviscid region is smooth.
The zonal recognition is based on the scalar truncation method,

0, lgl < e
T(qg) = { fl9), e<lg <o (6)
g lgf > e+o

where q is certain physical quantities and € and o are two threshold parameters which
can be adjusted to produce numerical results close enough to the true solution. For
the present study ¢ represents the viscous term. Work by Perkins and Rodrigue was
to choose o = 0 in the above scalar truncation method. Brezzi chose f(g) as a straigt
line and Canuto chose f(q) as a cubic spline [AC93]. The main concern here is that a
smooth transition of the viscous term should be maintained. Therefore, it is equivalent
to the determination of the pair of parameters, € and o, such that the SOhltiOI.l to the
Burgers equation is most accurate under certain error norms. Some comparisons of
results using various threshold parameters can be; found in [ACQ3][BCR89]{PR89J.
Since 7 is nonlinear which means in general, 7(5%) # B%(T(—%)), and ‘hencg it is
only suitable in the context of finite difference methods. An extension, given in the
following Section, to two-dimensional problems which involves finite volume methods
requires different treatment. Similar extensions to finite element methods can be found

in [AP93].
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A Vector Truncation Method

For two-dimensional incompressible viscous flow, the momentum equation given in (2)
is integrated over a control volume ) using a finite volume technique, i.e.

// dQ+//v u¢—uv¢)d9_——//8pd (7)

which is re-written as

// d9+/(u¢—uv¢) nds———//apdﬂ (8)

o0

where n denotes the unit normal vector. The fluid flow inside a viscous region is
certainly a rotational flow, and hence velocity gradients are the major contribution
to viscous effect. Therefore it is reasonable to apply truncations to these velocity

gradients, i.e.
// dQ+/u¢—yT(V¢)) nds———//apdﬂ (9)

should replaces (8), and 7 denotes the vector truncation methods,

¢ o

I(Ve) = (TG, T (10)

Since g—;‘ and a—z contribute to the rotational effect of the flow in the viscous region,

therefore these two velocity gradients are significant compare with 2% and ¢ ‘)“ . Hence

dx
du v du e’}
5. and 7= reduce to a smaller value earlier than oy and 5> with the apphcatlon

of (10). Thererfore (9) effectively reduces the Navier-Stokes equation to a truncated
integral form of Navier-Stokes near the outer zone but remains inside the boundary
layer and to the Euler equation further away from the body.

The truncation method is embedded into the finite volume formulation which
ensures that the boundary layer is evolved as part of the numerical solution. It allows
a smooth transition of mathematical models from the Navier-Stokes to the Euler
equation.

NUMERICAL RESULTS

First, numerial tests is provided for a flat plate problem. Instead of using the infinite
upper half plane, the finite domain {(z,y) : 0.5 < 2z < 2, 0 < y < 10} is used,
where the flat plate is placed in 0 < z < 1. There are 50 x 50 cells along x and
y-axis, 1/5 of the cells along y-axis are located in 0 < y < 0.2 and the rest are
located in 0.2 < y < 10. The upstream Reynolds number is chosen to be 1000. The
vector truncation method is tested with a series of € and o parameters. The results are
compared with the Blasius solution, with the package Phoenics and with the in-house
cell-centred finite volume software UIFS [Cho93] and are presented in Figure 1. Figure
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2 shows the effect of ||uc s — ufy||co for different values of € and ¢ used in the flat
plate problem, where u. , denotes the numerical solution of u by taking ¢ and ¢ as
the threshold parameters and uy, denotes the numerical solution of u by using the
software UIFS.

Second, numerical tests are provided for the NACA(0012 aerofoil at zero angle of
incidence. Therefore only part of the upper half of the physical domain is considered
and a C-type of mesh is used for subsequent computation. The finite physical domain
is mapped onto the computational domain {(£,7) : 0 < £ <2, 0 < 5 £ 10 where
the transformed aerofoil is a straight line located in 0 < £ < 1. There are 40 x 100
cells along ¢ and n-axis, 1/5 of the cells along n-axis are located in 0 < 7 < 0.2 and
the rest are located in 0.2 < 5 < 10. There are 25 cells along the aerofoil surface. The
upstream Reynolds number is chosen to be 1000. Figure 3 shows the velocity profiles
against the distance along n-axis, obtained at £ = 0.46 and £ = 0.66. Figure 4 shows
the effect of |{u, — uyy}|oo for the aerfoil problem.

In general, the finite volume solution obtained by means of applying the vector
truncation technique to the Navier-Stokes equation is close enough, in the sense of
engineering purpose, compare to the corresponding finite volume solution obtained
by means of the Navier-Stokes equation. From Figures 2 and 4, the solution accuracy
of the flat plate problem and the NACAO012 aerofoil probelm is not sensitive to the
choice of o.

CONCLUSIONS

The scalar truncation method is extended to a vector truncation method and is
embedded in a cell-centred finite volume method. The effect of the threshold parameter
o is insignificant to the accuracy of the solution. The choice of the threshold parameters
namely, o and ¢, is effectively equivalent to the determination of a minimal inner region
defined by the thickness function £. The present approach shows that the computation
of velocity gradients in the finite volume method can be used in both the evaluation
of the line integrals as well as for viscous effect comparison.
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Figure 1 The flat plate problem.
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