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1 INTRODUCTION

Many practical problems of Fluid Mechanics require the simultaneous use of different
physical models inside a given computational domain : local kinetic models must be
used in shock or boundary layers when simulating rarefied flows, refined meshes are
needed in recirculation regions or next to solid boundaries, wall laws are required when
calculating turbulent flows around obstacles. For such problems, one must identify
the domain where the local enriched model should be used, write adequate interface
conditions for matching the local and the global models, and propose an adequate
iterative algorithm for solving the resulting coupled problem without rewriting a full
new computer code.

This paper presents a general domain decomposition strategy for tackling such
situations, based on the following steps :

e approximate preliminary solution of the Navier-Stokes equations on the full
computational domain;

e calculation of generalized residuals for detecting the regions where the present
Navier-Stokes solution is inaccurate. For standard problems, these residuals are
estimated by the approximate values of the second derivatives of basic physical
quantities. For polyatomic rarefied flows, the residuals are obtained by plugging
the Navier-Stokes solution into a generalized fourteen moments Grad equation
specially developed for the occasion;

¢ adaptive construction and meshing of the different subdomains, finer models and
finer grids being used in the regions of large residuals;

¢ development of adequate interface conditions. These interface conditions match
inflow and outflow fluxes when coupling a local Boltzmann model with a global
Navier-Stokes equation. They use mortar elements when matching convection
dominated Navier-Stokes equations discretized on two nonoverlapping and

nonmatching grids;

e solution of the coupled problem by a Dirichlet Neumann algorithm.
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Figure 1: Decomposition of the domain in two subregions

This global strategy is presented below, with a particular emphasis on the simulation
of rarefied gas flows.

2 THE PHYSICAL MODELS

2.1 Geometric description

We consider the flow of a gas in a global domain € around a solid body of boundary
8Qw (Figure 1). We wish to split this domain into several nonoveriapping domains
and to use the best avalaible numerical model inside each subdomain. In general, one
has at least to separate two different regions Qg, and Q... The domain Q. is a
local domain which contains the obstacle, with internal boundary §Qw and external
boundary S. The domain Qg is a large domain, with an internal boundary S which
surrounds the body and an external boundary 8{.,; which is the external boundary
of the computational domain Q.

The subdomains Qg0 and Qo can be fixed arbitrarily at the beginning of the

calculation or can be automatically adapted to the physical characteristics of the
solution.

2.2 Basic Equations

On any subdomain ; where the flow can be reasonably described by these equations,
the Navier-Stokes equations will be used with appropriate boundary conditions
imposed on the body or on the different interfaces as specified later. These equations
will be numerically solved by a SUPG solver written in entropic variables operating
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on a given finite element triangulation of each local domain §; [8], [11]. The different
finite element grids do not necessarily match at the subdomain interfaces,

Unfortunately, these equations cease to be valid at high altitudes corresponding to
semi-rarefied regimes. At this level, slip effects can be observed in the boundary layer,
shock begin to be thicker and the gas gets rarefied in the wake. Such local phenomena
must then be described by kinetic models, such as the Boltzmann equation.

Let f be the density of gas particles at position # with velocity v, and internal
energy I. The Boltzmann equation of rarefied gas dynamics characterizes this density
as the solution of the integrodifferential equation ({4])

of ,, 0f _

The collision operator counts the particles which are gained or lost through
intermolecular collisions. For molecular gas having internal degrees of freedom, it is

deﬁued by
( ’ ) A (1114)6 ' (II*)6 l) ’ ’

dA = dv,dL[r(1 — r)]3~1drR3(1 — R*)’*~*dRdw,

As usual we have used the notation
f - f(v)[)’f’ = f(vl,fl),f* = f(’ll*,f*),f,: = f(viaji);

with (v, 1) and (vs, ) the velocities and internal energies of the collic'iing parjcicles,
and (v/,v]) and (I’,I.) the post collision velocities and internal energies. As in the
monoatomic case, the collision direction w € 5 is fixed and in a collision, we transform
the vector (v, v, [, L) with v, v, € IR3,1,1, > 0, by setting

el = %lv — vy)2 + I? + I = total energy of the collision,

g = v — v, = relative velocity,
and by defining the post collision velocities (v/,v}) and energies (I', 1) by
v v, = v+,
g’ = — v, = 2Re{g — 2wg.w}/lgl,
I'?=r(1-RYe?, L= (1-r)(1-R%e.

The factors R, r € [0, 1] introduced in the collision operator determine the quantity
of energy which is exchanged between internal and kinet:,ic energy and jbetween‘the
two internal energies ([1], [3]). The term (IL/I" IL)*-1 is introduced to give the right

value of 545
=55y

in the limiting hydrodynamic equation of state p = ('y —1)pe. N ~
The collision cross section B measures the probability of collision of particles (v, I)

and (v,, ) with parameters (w,, R). In the general case, it is a function of all collision



414 Adaptive Multimodel Domain Decomposition

invariants. In our simulations, we have used the classical Variable Hard Sphere model
(VHS)
B = Clg|=**lg.w|R 72,

which is the simplest model compatible with a Sutherland type viscosity law
p= KT5+e,

at the Navier-Stokes limit. Here C' and K are some constants.

This equation must be complemented by boundary conditions imposing the
distribution of incoming particles. In the case of perfect accomodation on the body’s
surface, we would have

f(z,v,1,t) = poo My v, (v, I) if v-n <0 at infinity,
flz,v,1,t) = kMy, 7,(v,I) if v-nw <0 on the body’s surface,
/f(a:, v, I,t)v - nwdvdl = 0 on the body’s surface,

with M, r denoting the Maxwellian distribution with mean velocity v and temperature

T
., pIt lv — u|? + 212
Mu,T(’U,I) = )\JWGfUp <———-—2—j'7—-——— .

More elaborate boundary conditions can also be introduced ([4]).

2.3 Transition between Boltzmann and Navier-Stokes

When the gas is dense, solving Boltzmann equation is very expensive or out of reach.
Therefore, we wish to solve Boltzmann equations on very small subdomains, and to
be able to realise smooth transitions or couplings between these Boltzmann solutions
and cheaper Navier-Stokes solutions. For this purpose, the best way is to introduce an
asymptotic kinetic model, approximating the Boltzmann equation, and degenerating
to the Navier-Stokes model when the gas gets dense.

For monoatomic gases, this is classically achieved by introducing the so-called
Chapman-Enskog or Grad expansions [6]. For more realistic polyatomic gas having
internal energies, we first need to extend these approaches.

To obtain such a polyatomic generalisation of Grad’s thirteen moments expansion,
we first assume that f can be represented as a linear combination of Hermite
polynomials, given here for a diatomic gas (§ = 2), by

£= 10 |1+ T2 (o= it — )y~ Piy)

2pR,T
+_1_Si(v—u)i <|v—u|2+ 217 T
14 pR,T \ R, T RT

£ = V2pI%—t oz (_ (Iv —ul? 4217
(2n)3 (R, 1)@+ 7 9R,T :
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This ansatz can be either postulated or derived as the trace of the Grad’s expansion
of a monoatomic gas in dimension (3 + 4) ([7]). From the orthogonality of the
Hermite polynomials, the thermodynamic coefficients p (density), p (pressuze), pi;
(the opposite of the viscous stress tensor), S; = 2¢; (two times the heat conduction
vector) correspond to the usual definition

p:/fdvd[,
pu; = /v;fdvd],
R,T = /(‘” + I2) fdvdl,
p=r i+3
05 = —/(v~u)i(v—u)jfdvdI,
a —_-/(v—u)('” > uf? + I?) fdvdI

pij = —0ij — poij,
Si = 2¢:.

To identify these unknown thermodynamic moments, we now report the above
expression of f into the Boltzmann equation and integrate the resulting equation
against the 14 moments

1
v
K14 = ViV
2I%
vi([v]* +217)

This yields the final reduced varitational kinetic system
—g /K14fdfdﬂ + j—/K14’0k fdldv = /K14Q(f) dIdv. (l)
ot Oy

If we calculate the different integrals in (1) and take into account the paFtiszular
expression of f, after lengthy algebraic calculations, we can rewrite this variational
equation as the following Grad system of partial differential equations [7

o Navier-Stokes Conservation laws

B[) 6{) uy,

R P

c'hz, au, 160,k _

Bt +ou dzr  p Oz ’

p 2 Bu, 8p T Oug 18.S'k -0

% TEP* Gae T “0ay T 57 Bay, | 50wk
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o differential generalisation of Navier-Stokes constitutive laws

Opi;j  Oukpi; 1 (35’,- 8S; 208k )

ot oz 6(13]' 6_m, h 55& :
6 + 611. 2 6uz §is
+pik 77— dzx Dik 5 Bz sz Er ij
Sy Ou; 2 (‘)uk (2)
S % 2k} = JG
+p(6xj + Oz; 5Oz ) i’
65& 6uk Si 9 Bu, 6 2 Buk
Bt T oo T T T T Sa + 7% 5a;
2 8cnk ap,k 6R9T
1 T 1
+pzaz+2R Pit 5 + 9pix B
+7p 28T _ 6 gy g,
Oz

Right Hand Sides Ji(;) are explicit integrals of collision cross-sections and can be
expressed as functions of the different thermodynamic variables ([9]).

To derive the Navier-Stokes equation, we then suppose in addition that the fluid
is close to equilibrium so that moments p;; or .S; and gradients of thermodynamic
variables remain small. At first order, the differential constitutive laws then reduce to

the standard laws
Ou; 0 a
Pij =—u< = +~g’—> ~ At by,

613‘] 6$1 6 L
oT
S = -—-2&%—1
with transport coefficients
__ 30(R,T)Y?
- Cxl/iz
1323
5= g fok

2 4
*-“(:rﬁ%)“

With this simplification, we get the Navier-Stokes equations as the limiting case
of a Grad’s fourteen moments expansion. As a byproduct, which will be the key for
closing our hierarchy of models and constructing our coupling strategy, we also obtain
the polyatomic kinetic distribution associated to the Navier-Stokes solution as

s = 10 [1= 2 (s =)oy — )~ (24 55 ) o= sy

3 2 2 au,-
(1 ( +375)>”")67j

K (v—u) (I'v—u|2+ 212 7 or
7 pR,T \ R, ' R,T dz; |
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This distribution generalises the classical monoatomic distribution originally
introduced by Chapman-Enskog and Grad.

Remark 1 The Grad’s equation introduced above as an intermediate step between
Boltzmann and Navier-Stokes is not a good model by itself. Its physical relevance is
not garanteed, and mathematically it loses the positivity and hyperbolicity properties of
the underlying Boltzmann equation. What is expected nevertheless, and what is verified
in our numerical tesi, is that the difference between Grad and Navier-Stokes is a good
measure of the amount of desequilibrium in the fluid, and therefore of the local lack of
validity of our Navier-Stokes solution.

3 ADAPTIVE CONSTRUCTION OF THE SUB-
DOMAINS

Our basic problem is now to find the legitimate Navier-Stokes domain, or equivalently
to find the Boltzmann zone (,. where the Navier-Stokes solution fyg is not an
adequate solution of our problem, and where we should therefore solve the kinetic
Boltzmann equation. For this purpose, we use our above model hierarchy and simply
observe the quality of the Navier-Stokes distribution as solution of the finer Boltzmann
equation. This original distribution is obtained by solving the Navier Stokes equations
on the whole domain with say wall laws or slip boundary conditions at the wall.
Plugging this solution into Boltzmann equation leads to the following variational
residual

/go('v, I)[a];]:‘s +v- 8(1;1;5 - Q(fns, fvs)|dvd]

= /@(U:I)R(fNS)d”df = Ry(fns)(z,t), Vo,Vz Q.

As such, this residual is still too complex to compute. Therefore, we restrict ourselves
to the test functions ¢ used in Grad’s 14 moments derivation. With this choice, we
can compute one local residual per finite element function ¥ given by

1

1 / —u p.,%
VolCelly || Jo %1 Bz,

1 Ovn OYn _ 2. YN 5..)
o7 (Si Oz; + 5 Oz; 5ok Oz

Ju; Ju; 2 _8_3;_5“

+§ Pk _Bxk + ik i - '5“Pkl By
Ou; 6Uj 26uk ) (z))
g T 20k ) — g

+p (amj * Pay 57w, i) )N

Ry =

This residual is simply the norm of the residual of Grad’s equation in the pi; moment,
when used with the available Navier-Stokes solution. From our previous remark, this
difference should be a good indicator of desequilibrium in the fluid, and therefore of

the local relevance of the Navier-Stokes equations.
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We now choose the Boltzmann region ;,. as the region of § where this residual is
the largest.

In practice, recovering the original domain by an unstructured adapted Navier-
Stokes grid and a cartesian Boltzmann grid, we identify this region by the following
sequence of operations :

. calculation of a global, numerically accurate Navier-Stokes solution;

. calculation of the above residual on each Navier-Stokes node;

. interpolation and smoothing of this residual on the cartesian grid;

B W DN

. definition of the Boltzmann domain €),. as the set of cartesian cells where the
residual is above a user defined threshold;

5. calculation of the internal Navier-Stokes interface by spline interpolation of the
Jagged Boltzmann interface;

6. automatic meshing of the external Navier-Stokes zone by a Voronoi algorithm,

the size of the elements being equidistributed with respect to the Hessian of
characteristic flow variables.

We illustrate below this strategy on the following example

y = LPr=g
Angle of attack = 30 degrees
Mo = 20
Reynolds = 5000/m, 50000/m
T, = —t
Ty Ry M,
Yoo = 1
Poo = 1
Tw = 6T
Uw = 0

The Navier-Stokes solution is calculated by a SUPG code provided by Dassault,
using a mesh of 6882 nodes. We present below the original Navier-Stokes mesh, the
calculated residual isolines defining Boltzmann and Navier-Stokes regions, that we
compare to the amount of rarefied desequilibrium predicted by a global Boltzmann
calculation. We observe that apart from boundary problems induced by the noslip
boundary condition in the Navier-Stokes solution, both the Grad’s residual and the
global kinetic solution predict the same geometry for the rarefied domain (figures 2,
3, 4, 5). Similar results can be found for denser flows in ([9]).

4 THE COUPLED PROBLEM

Once knowing the adaptive partition of our original domain between a Navier-Stokes
and a Boltzmann domain, we need to formulate and solve the resulting coupled
problem. For this purpose, we will first introduce the coupling strategy in the
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general hyperbolic case of a Boltzmann-Boltzmann coupling and then degenerate one
Boltzmann domain to the limiting Navier-Stokes model.

Let us for the moment consider the domain as splitted into two nonoverlapping
subdomains ; and Q, with external unit normal vector n; and ng, and interface T.
By restricting Boltzmann equation to each subdomain and decomposing the interface
continuity condition (fi — f2)v.n; = 0 along incoming subdomain characteristics, we
can decompose the original Boltzmann equation into the coupled set of well-posed
subproblems

divy(vf1) = Q(fi, f1) in @ x R?,
fi(z,v,I) = foz,v,I) on T if v.ny <0,

divs(vf2) = Q(f2, f2) in Q2 x IR?,
folz,v,1) = fi(z,v,]) on T if v.ny < 0.

This coupled problem can then be solved by the fixed point Dirichlet-Neumann type
iterative procedure [10]

o guess fa(z,v, ) on incoming characteristics v.ny <0,
¢ solve the resulting subproblem on £,

o with the resulting value fi(z,v,]) imposed on the incoming characteristics
v.ny < 0, solve the subproblem on s,

o use the result to update fa(x, v, I) on the interface and reiterate.

This numerical strategy seems to be quite efficient, although a few theoretical results
are yet unsolved : well-posedness of each subproblem (this can be proved for a BGK
kinetic problem, not for Boltzmann), cost and noise control of each local numerical
Boltzmann solution when using Monte-Carlo techniques, convergence of the fixed point
iterations. For the time being, such convergence is only proved in the absence of

collision terms [5].
Despite these theoretical weaknesses, we can easily extend the above strategy to the

Navier-Stokes Boltzmann coupling, simply by replacing f; on £y by its Navier-Stokes
approximation

= fns.
The interface boudary condition is then transformed into

fa(v,I) = fns(v,I) on T if v.nz <0,
fns(v, I) = falv,I) on T if v.ny < 0.

The first condition is imposed as boundary condition in the Boltzmann doma:in.
The second condition is imposed as a boundary condition in the Navier-Stokes region

by taking its velocity average
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Fluz(U,n) = Fluzy(U,n) + Fluz_(U,n), (2)
- -

S e T

Fluzy (U, n) :/ v.nfng(z, v, )dvdl,

v.n>0 ’U2/2 + T2

[ 1 |

Fluz_(U,n) :/ v v.nfa(z,v, Idvdl.
v.n<0 U2/2+12

With this new boundary condition, our Dirichlet-Neumann loop reduces to the
following sequence of operations already described in [2]

1. Solve few steps of the local Boltzmann problem

n _ fn-1
P b divalor) = QU )0, 1) on s,
M (e,v, 1) = fys(z,v,I) on T if v.ny <0,

f*(z,v,I) = Maxwellian on body.

2. From f", compute the half fluxes Fluz_ entering the internal boundary of
Navier-Stokes region

3. With these imposed fluxes Fluz_, using the mixed boundary condition (2) on
the interface and usual boundary conditions at infinity, integrate the Navier-
Stokes equations a few steps in time on the external domain and go back to the
Boltzmann problem.

In all our numerical tests, we have used 5 such global iterations.
We have first tested this algorithm by computing the two-dimensional flow around
an ellipse with the physical data

Yy = 3,Pr=j
Angle of attack = 30degrees
Mo = 20
Reynolds = 5000/m
Tw = 1673K
U = H672m/s
po = 1
Tw = 5.6T
uyw = 0

The corresponding results are then validated by comparing them to the solution
of a global Boltzmann simulation (figures 6, 7 and 8). We observe that the coupled
solution is quite smooth at the interface and coincides with the global Boltzmann
solution, including at the wall, and this is achieved at a smaller computational cost.
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5 CONCLUSION

The proposed multimodel coupling numerical strategy appears to be operational for
polyatomic gases while using adaptive domain splitting. For industrial flexibility, it
was implemented by chaining independent Navier-Stokes and Boltzmann codes within
an unique shell script.

The work to be done concerns the cost and noise control in the numerical solution
of the local Boltzmann problem, the improvement of the rarefied model hierarchy
by deriving more consistent asymptotic expansions (Levermore) preserving positivity
and hyperbolicity of the asymptotic limit, and the generalisation to the numerical
treatment of turbulent boundary layers via asymptotic wall laws.
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Figure 2: Navier-Stokes mesh: 6882 nodes. The Navier-Stokes solution is computed
with no-slip boundary condition on the wall.

Figure 3: Grad criterion: Re=5000/m. We draw only the isolines between 0 and 1. The
white zone defines the Boltzmann domain.
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modulet mallin 78701755

critbnsef nset

7469 QUADRANGLES

Figure 4: Boltzmann criterion estimated by a kinetic simulation. We verify that the
Boltzmann region here is quite similar, except under the body. This difference is due
to the bad boundary condition use in the Navier-Stokes computation.

Figure 5: Grad criterion: Re=50000/m.
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Figure 6: Navier-Stokes mesh to compute a coupled solution. The internal boundary is
obtained thanks to the criterion. The mesh is adapted with the global initial Navier-
Stokes solution.
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Figure 7: Temperature isolines of the coupled solution. The continuity of the isolines
at the coupling interface is very good.
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Figure 8: Cross section of the temperature. Superposition of the Boltzmann solution
(dotted line) and the coupled solution (continuous line). The coupled solution is very
good compared to the Boltzmann reference solution and recovers the right temperature

jumps at the wall.





