Domain Decomposition Methods
to Penalty Combinations for
Singularity Problem
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Abstract

An embedding technique is presented in this paper to implement penalty combinations
into parallel by the iterative substructuring method. Penalty combinations using a
penalty integral are much simpler than the direct constraints to match different
admissible functions. In combinations, the Ritz-Galerkin method is used in the singular
subdomains 2% where exist solution singularities, and the singular particular solutions
are chosen to be admissible functions so that only a few of them are needed to cope
well with the difference grids in the finite difference methods used in the rest of the
solution domain. Consequently, while applying the iterative substructuring methods,
we may attain the singular domain Q% to the interface of two subregions in the
domain decomposition methods, and regard Qt as a ”fat” interface or called an
interface ”zone”. The matrix contribution resulting from Q1 can be included into
the preconditioner matrix due to a few of unknown coefficients to be sought. The new
embedding technique may reform penalty combination easily into parallel computing
by the existing, iterative substructuring methods. Such an technique has been proven
to be effective, by a brief analysis and numerical experiments of Motz’s problem given
in this paper.

1.1 Penalty Combinations of the Ritz-Galerkin and Finite
Difference Methods

Parallel penalty combinations are presented in this paper for solving singularity
problems, to join the combined methods with the domain decomposition methods
(simply written DDMs). In this paper the penalty combinations to combine the finite
difference method with the Ritz-Galerkin method, to regain the superconvergence rates
O(h?~%), where §(> 0) is an arbitrarily small number. Usually, the singular domain
should be chosen as one subregion, where the mixed Neumann-Dirichlet problem in
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DDMs is solved. However, since only a few unknown coefficients are used with the
total number L, having an asymptotic relation:

L = O(|inh)), (1.1)

where & is the maximal mesh spacing of difference grids, the singular subdomain may
be regarded as a "fat” interface or called an interface ”zone” in the renovated domain
decomposition methods. Indeed, a few more unknown coefficients in the preconditioner
matrices will not cause much effort in computation in the inverse preconditioner
matrices.

Consider the Poisson equation with the Dirichlet boundary condition

O?u 82
—AU:—(@‘l“é&;‘):f(x;y); (2,y) €9, (12)
u=0, (z,y) €09, (1.3)

where § is a polygon domain, and the function f is smooth enough. For simplicity, we
assume that only one singular point of the solution u(z, y) exists in 0 =QuUda. Let
Q) be divided by a piecewise straight line I'y into two subdomains Q% and Q. The
Ritz-Galerkin method is used in Q% U 8 including the singular point, and the finite
difference method is used in {~. The subdomain 2~ is again split by quasiuniform
difference grids into small rectangles 0;; and triangles A;;. Denote u; ; = u(%i, %),
as the solution on the difference nodes (7,7). The finite difference method can be
regarded as a special kind of finite element method if using piecewise bilinear and
linear interpolatory functions and if using special integration rules to approximate the
integrals involved (also see [Li(86,95)]).

Assume that the solution u in Q can be spanned by v = ¥y + Y0, Di Vs,
where D; are the expansion coefficients, and ¥;(i = 1,2,--.00) are complete and
linearly independent basis functions that are known. Then the admissible functions in
combinations of the RG-FDMs are written as:

U_{v" = w9, in Q7, 1.4)
vt = \Ifo—l-Zf;lDi‘I’i‘inQ'*’, (1.

where I); are unknown coefficients to be sought. If the particular solutions of (1.2) and

(1.3) are chosen as W;, their total number will greatly decrease for a given accuracy
of solutions.

Since there occurs discontinuity of solutions on I'y, i.e., v+ # v~ on I'y, we define
another space

H={veL*Q),ve HYQ"), and v € HL(QF)}, (1.5)

where H'(Q) is the Sobolev space. Let Vi (C H) denote a finite dimensional collection

f’f the function v in (1.4) satisfying (1.3). We will couple v* and v~ by the following
integrals

D(u, v) = %/r (ut —u7)(vt - v )de, (1.6)



Z.-C.Li 75

where P.(> 0) the penalty constant, and (> 0) the penalty power. Hence, we lead to
the penalty combination of RG-FDMs, to seek a solution uj € V3, such that

ap(up,v) = fa(u,v), Yo €V, where m

an(u,v) :/ ViVuds +/ VuVvds + %/ (ut —u )t —v7)de  (1.8)
Q- o+ Yo

In virtual computation, the integrals D(u,v) on Iy are evaluated approximately by
integration rules. When ¢ > 4, the superconvergence rates of error norms |[¢||, =
O(h?*7%), and e[, = O(h*?) in the solution derivatives can be achieved by
penalty combinations for the quasiuniform difference grids: $; = U;; B;5, and S; =
(Uij Os5) U (Ui Agj) respectively.

1.2 Domain Decomposition Methods to Penalty Combination

We will still follow the typical approaches of Bjorstad and Widlund (86), Bramble,
Pasciak and Schatz (86), Manteuffel and Parter (90) and Morz (89). Let Q be also
split into Qr and Q7 by I' in DDMs:

Q:@QUQ]UQIIUI‘, (1.9)

where Q, Q7 and T are two subregions and their interface. To distinguish partitions
between DDMs and combinations, we call subregions 2y, 217 and interface T’ in DDMs,
but subdomains QT, Q= and common boundary T'y in combinations respectively, where

Q=00uUQTUQ UT,. (1.10)

The key treatments of the DDMs applied to the combinations are how to embed
QF, Q™ and Ty into Qf, Q7 and T.

It should be noted from Eq. (1.1) that the number of the coefficients D; is much less
than that of the variables v;; € {T'N 00" }. Hence we may simply attain thé singular
domain Q7 to interface I, and call the interface "zone” I'* instead,

I*=TUT,UQ". (1.11)

So we have
QtCcT* and I CT. (1.12)

The subdomain €2~ is also divided into Q7 and ;.

Below let us describe more in details the renovated DDMs of combinations. Denote
the variables by 1, €2 and z3 in Qr, Q77 and their interface I'*, respectively. Then
the unknown expansion coefficients {D;} are included in z3. Denote & = (21,22, :vg)T .
The equations (1.7) are then reduced to a linear algebraic equation system

Ai =, (1.13)
where b = (b1, b2,b3)T , and
A 0 Aps
A= 0 Asy  Asa . (1.14)

Afs A% Ass
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In (1.14), A11, A2s and Asz are the coefficient matrices from Qy, Q7 and T'*. Also
Azs denotes the relation matrices between z; and z3, and As3 denotes those between
5 and 3.

By using the block Gaussian elimination, we can again reduce (1.13) to a system of
algebraic equations of x3 only:

Sxz = 33, (1.15)

where the Schur matrix
S = Az — AT AT} Ays — AT AS) Ags, (1.16)

and the vector 133 = b3 — A?a A’l’l1 by — Ags Az—zl by . We may solve z3 from (1.15) by
the preconditioner conjugate gradient method (PCGM) (see {Golub and Loan (89)]).
Then z; in O and z5 in Q75 can be solved in parallel. For the penalty combinations,
we choose the preconditioning matrix

S1 = A — ATy AT Aus, (1.17)

where A:%) excludes the matrix components of the contribution of Qr; to Ass, but
includes that of O when using (1.12) in the embedding techniques.
The penalty integral

D(v,v) = —&/F (vt —v7)2de, (1.18)

plays a role to match the admissible functions v and v~ . The variables v;; on Iy and
the coefficients {D,} are also included in z3. We then have [Bjorstad and Widlund

(86)]

Ain 0 Ay An 0 Az 17T 0

0 Ay A 0 Az Ass 0= 0 , (1.19)
Afy Af; Ass AT, 0 4D y SSTly

where y are the sequential solutions of z3 on the interface boundary (or "zone”).

The operation involving the inverse matrix can be carried out by two steps [Bramble,
Pasciak and Schatz (86)].

Step L. Solve the Dirichlet problem on Q77 UT:

Aggzy + Aszy = 0. (120)

Step II. Solve the Neumann-Dirichlet problem on Q; UT

Ann Aua z; 0
[A?s A%‘)Hms}:[y]" (121)

In fact, the preconditioner matrix S, in (1.17) is the Schur matrix of the above
equation.
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1.3 Analysis of Preconditioning Condition Number
Let the matrices A and B be positive definitive and symmetric, and B be the

preconditioner matrix. Then the preconditioning number is defined by the following
ratios of the maximal and minimal eigenvalues of B~ A.

Con. (B™'A) = Con. (AB™") = Apax(B™1A)/ Amin(B~ 4), (1.22)

_ Az, z) _ . Az, z)
Amax(B~1A) = max , Amin(B71A) = min , 1.23
( ) llsli#0 B(z, ) ( ) liell0 B(z, ) (1.23)

where A(z,z) = z7 Az, and the Euclidean norm ||z|| = (3}, «#)'/2.

Counsider the Poisson equation on Q7 in Fig. 1.1b with the mixed Neumann-Dirichlet
condition: P
a—Z =0 on Ty, (1.24)
where T'y is the common boundary of Q7 and Q™. Suppose that the finite difference
method ( or the finite element method) is used in Q~. Let A, and B, be the associated
matrix and the preconditioner matrix in the traditional DDMs. Many reports on
DDMs such as [Bjorstad and Widlund (86), Bramble et al. (86), Manteuffel and Parter
(90) and Mroz (89)] have obtained the B — D bounds

—Au=fin Q7 ,u=0o0n 0\ Ty,

o B (24, 25) < Ag(Ta,2,) < a1 Ba(zg, 24), (1.25)

where ap = 1, a3 = C(1+ £n?h), and C is a bounded constant independent of A.

We can prove the following theorem.
Theorem 1. Let the B — D condition hold. Then for the DDMs of penally
combination (1.7) by the embedding technique (1.12), there exist the bounds

Con.(S7'S) < a1 /aq. (1.26)

This theorem displays that the renovated DDMs in this paper will not cause
deterioration of preconditioning condition numbers of the combinations, compared
with the existing DDMs.

1.4 Numerical Experiments for Motz’s Problem

Consider Motz’s problem which solves the Laplace equation on a rectangle  (—1 <

z<1,0<y<1) ,

&y H%u .
:w—f"gg}i‘:Oan, (1.27)
with the mixed Neumann-Dirichlet boundary conditions

! ou du Ou
Ulp<ory=0 = 0, #]g=1 = 500, %lyzo = 5§|y=0/\z>0 = 5‘;‘:1::—1 =0. (1.28)

Au

Note that there exists an angular singularity at the origin (0,0) due to the intersection
point of the Neumann-Dirichlet boundary conditions.
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We split Q by T into two subdomains Q% and ©~, where the singular subdomain
Q7T is a small rectangle (—% <z < %, 0<y< %), and Q~ is the rest of Q (see
Fig. 1.2a). The Ritz-Galerkin method and the finite difference method are used in ot
and Q™ respectively, with the admissible functions [Li(89,95)]

v~ in Q~
= 2
v { vt = Ef:o Dert+3 cos(£ + $)0, (1.29)

where (r,0) are the polar coordinates, and D) are the coefficients to be sought. The
subdomain 2~ is again divided into small squares as shown in Fig. 1.2b.

For DDMs of penalty combinations, we choose Fig. 1.3 as the computational model,
where Q~ is divided into three subregions

Q" =Q7UQ;  UQL,, =9, Qu=9Q,U0;, (1.30)

and the interface ”"zone” I'* in (1.12), where I is the common boundary Q7 and ;.
Choose the zero initial values: D&O) = 0 and vl(-;-)) = 0 on ' UTy. Then the sequences

ng) and vg-c) on T'UT, ng) can be obtained from the DDMs. To measure the iterative
errors we may compute the following sequential errors,

Ak = max{(i jr)ré%m {ug?) — uEf}‘l)l,melDE’” - ng—l)‘} (1.31)

Table 1 presents the sequential errors (1.31) until the reduced ratios Agfiw / AL, <
107%/2. It can be seen that only 7-8 iterations are needed in the renovated
DDMs. Table 2 provides the approximate coefficients in the iterations. The above
computational results show an effectiveness of parallel penalty combinations for

singularity problems.
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Table 1.1 Error norms in iterations the by Penalty Combination using

preconditioner S; with P, =1 and 6 =4 by A

(k)

maz

AE), <107%/2

Tteration Apfax

namber M5 =2 4 6 8 10
1 401.1 403.3 403.8 403.9 4039
2 80.17 78.29 77.88 79.73 79.65
3 5.802 7.444 7.300 7.467 7.436
4 0.3281 0.2061 0.1640 0.1760 0.1917
5 0.5317+10~% | 0.1460 0.1282 0.2953% 101 | 0.2902% 101
6 0.1186%10~T | 0.1309%10—2 | 0.3653%10~2 | 0.1517« 102 | 0.1433 %102
7 0.4412x10~% | 0.1914%107% | 0.2300%x10~3 | 0.6330%10~° | 0.6161 %10~
8 / 0.1162x10~% [ 0.3964%«10~% | 0.3516% 10> | 0.3794% 105

Table 1.2 Leading coefficients by the DDMs of Penalty Combinations as
Ms=8,L+1=6,Pc=1and o =4.

Tteration
number Do D, .D~2 Ds D, ﬁ5
1 403.8726 | 9.8300 34.6974 | —45.6345 | 0.5574 | —16.3848
2 404.9640 | 89.5558 | 24.3091 | —3.1285 5.9365 | 3.7177
3 401.0731 | 87.7007 | 16.8425 | —8.6168 1.6305 | 0.7451
4 401.0927 | 87.6446 | 16.9661 | —8.7928 1.7377 | 0.6990
5 401.0925 | 87.6467 | 16.9644 | —8.7924 1.7295 | 0.7285
6 401.0926 | 87.6469 | 16.9636 | —8.7939 1.7306 | 0.7295
7 401.0926 | 87.6470 | 16.9636 | —8B.7940 1.7312 | 0.7299
8 401.0926 | 87.6470 | 16.9636 | —8.7940 1.7312 | 0.7299
Com. Coeffs. 401.0926 | 87.6470 | 16.9636 | —8.7939 1.7312 | 0.7299
True Coeffs. 401.1625 | 87.6559 | 17.2379 | —8.0712 1.4403 | 0.3311
u=0
a
\ ///I//
Iy /; C:’
Y ¥

(a)

®)

Figure 1.1 The partition of the DDMs when Q% C I'*
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¢1/21) 1/2,1
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1/2,1/2) (1/2,1/2)
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- e
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(a) (b)

Figure 1.2 Partitions of Mofz’s problem in the combinations and partition in
DDMs

Figure 1.3 Partitions of Motz’s problem in the DDMs while 0+ C 9y,
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