Splitting Extrapolation Method for Solving Mul-
tidimensional Problems in Parallel
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ABSTRACT. The splitting extrapolation method is an important method in
numerical solution of multidimensional problems. Two types of splitting ex-
trapolation algorithms with their applications in solving partial differential
equations are disscussed. Numerical experiments show that the method is su-
perior than the Richardson extrapolation method in the sense of parallelism,
computational complexity and computer storage needed.

INTRODUCTION

Many mathematical models of scientific and engineering problems are described
by partial differential equations. Despite the significant progress made in digital
computers over the last two decades, the solution of high dimensional problems
with complicated domains still remains difficult. It is due to the fact that the
computational complexity and computer storage required increase exponentially
with respect to the dimension. In order to overcome this difficulty, it is necessary
to develop parallel algorithms with high accuracy,

In recent years, promising progress has been made in parallel computational
methods. The following three types of methods have a common characteristic:
large scale multidimensional problems are subdivided into smaller problems.

(a) Domain decomposition methods, including multilevel methods and the fast
adaptive composite grid methods [4];

(b) Sparse grid combination techniques [7]; and

(c) Splitting extrapolation methods [1, 2, 3, 5, 6].

The splitting extrapolation, which are also called the multivariate Richardson
extrapolation, was first established in 1983 by Q. Lin and T. Lu [1]. It is an
ideal method for dealing with the so called ”dimensional effect” arised in solving
multidimensional problems. The most recent development of the method can be
found in the monograph [8]. A comprehensive review on splitting extrapolation
methods and sparse grid combination techniques can be found in {7].

THE PRINCIPLE OF SPLITTING EXTRAPOLATION

In order to find the approximate solution of a continuous problem, one first
choose a suitable grid parameter i and an appropriate discretization scheme, so as
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to convert the continuous problem into a set of algebraic equations and then obtain
the numerical solution u (k). The accuracy of «(h) depends on h. For instance,
a finite difference scheme for a s-dimensional problem can naturally include s in-
dependent grid parameters, ie., h = (hy, hg,- - -, hs). However, independent grid
parameters can be chosen according to the scale as well as the geometry of the
domain. The number of these parameters can even be larger than the dimension s.

For many continuous problems, it can be shown that under certain assumptions,
there is an asymptotic expansion of the error between the numerical solution u (k)
and the exact solution u:

1) u(B)=u+ » Cah®™+0(H™),

1<]al<m
where h = (h1,hg, -+, hs), @ = (a1, 00, -, ), || = a3 +ag+--+a,, K2 = h3*.
.. hg“’ and ho = maXi<i<s Ri, here Ry, hy, -« -, h, are independent grid parameters.
Ifhy = hg = --- = hg, (1) is the classical Richardson asymptotic expansion.

Obviously, (1) indicates that the error of u (R) is O (h§). It is expected that, based
on (1), a cheaper and more accurate solution can be obtained by the method of
splitting extrapolation, i.e., instead of taking a global refinement in all directions
as suggested by the classical Richardson extrapolation, one needs only to carry out
some unidirectional refinements. In 1990, we proposed two types of unidirectional
refinements [3].

Type 1. Given an initial grid parameter A = (h1,- - -, As), we choose successively

the refined grid parameters —2% = 2’}1 )ttt -2’-%’;), 0 < |8| £ m, and obtain

the corresponding approximate solution u (-2’%) .

Type 2. Choose successively the refined grid parameter (1-’:ﬁ) =(3 —}:151 Tt I%ﬁa),
0 < |B] £ m, and the corresponding approximate solution is denoted by
u(

B
8
u (-2’%)(01" u ((—1%3—))), 0 < |B] £ m, can be evaluated in parallel. Furthermore,

by using the extrapolation coefficients {ag or @g, 0 < |8] < m}, we can obtain the
following approximations with m splits.

Type 1.

@) wm®)= 3 o (g),

og|pl<m

and

Type 2.

®) ()= Y dpu (.213)

0<iBi<m

Both u,, (h) and 1y, (A} are of order 2m + 1.
It is known that the extrapolation coefficients ag satisfy the following equations
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Z agzl

og|gi<m
@ ) :
> s =00<Z|e<m
0<|g|<m

Similar relations also hold for dg.
The exact extrapolation coefficients can be computed in advance. In the follow-
ing, for a two-dimensional case and 0 < |8] < 3, terms in the asymptotic expansion

(1), the corresponding approximate solutions and the extrapolation coefficients ag
are arranged in triangular patterns:

1 n2 At RS
hZ h2hZ  hihl

[ i

u (he, hy) “(b‘z“:hy) “(Lff’hy) “(Es"hy)

h.
u (hm, _81)
_97 148 _ 64 4006
567 135 27 2835
148 _80 256
135 27 135
_64 256
27 135
4096

As a special case, when the number of split m = 1, the extrapolation coefficients
for a s-dimensional problem are:

(4s—3) 4
a(o,m,O) = ———-—3—, 0,(1’0,.,,’0) — e e = a(ﬂ,-“,O,]) = 5,

i.e., there are only two different values and Gg = ag.
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Some of the coefficients ag and &g, 0 < |8] < m, can be found in {4] and {5].

MULTIVARIATE ASYMPTOTIC ERROR EXPANSION OF THE NU-
MERICAL SOLUTION TO PDE

Finite Difference Methods

Consider the following semilinear elliptic equation:

Au= f(z,u), in Q= (0,1)%,
(5) { u =0, on 9

where f,, (z,u) >0,h = (hy,ha,- -~ hs), and h; = 7, for i =1,2,--,5.
Using the central difference scheme, we have the following difference equation:

Ahuh:zhi_2 {uh(mlyw%""mi'—hia"'7$8)'—2uh(‘,‘v1,'"7‘7’,’57“""‘63)
i=1
(6) +uh (351,' e X By, .’;(;S)} =f (m,uh), T = (mly' : '7935) € Qh;

u? =0,z € 8O",

where Q" = {z = (1, + -, %,) : 7 = jhi, 1 <j < N;, 1 <i < s}

Theorem 1. If u € C7+7 () ,0 < 0 < 1, then Jwg € C¥Ho281(Q), 1 < |B| < 2,
such that

u—ut Y weh® =0 (),
1<ipi<2
h = i
where hg lréliagcsm
Remark: If €} is a smooth domain, the above theorem will still hold if quadratic
interpolation polynomials are applied at irregular points.

Fingte Element Methods

One of the earliest work on splitting extrapolation of finite element methods was
published by Q. Lin and T. Lu in 1983. A recent development is the monograph by
Q. Lin and Q. Zhu (1994). If s = 2, using bilinear clements on rectangular grids,
one can prove the following theorem for equation (5):

Theorem 2. If $* is a regular rectangular subdivision of Q, and u € W2 (Q) N

H(O)Nn (Heegh W; (e)), where 1 < ¢ < oo, then there exist functions w; and ws,
independent of h = (h1, ha), such that
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(7) [u” — w! = Bfw] — Rjwj|, < chd llully, ,
and
®) |l — u” — h3wl — hjwi|| < chd [inhof Jjully .

where ho = max {h1,hz2}, |[ll, denotes the norm in L? (Q), ||-||., denotes the norm
in L* (Q), u! denotes the interpolation of u, and

1
I

1
el = Z ”uﬂﬁ,p,e , for p =2, 0.

ecah

The above theorem shows that one split can be used while under stronger con-
ditions, more splits are allowed.

Similar result remains true for three dimensionsal case. But a more important
case is that under certain conditions, one can choose independent grid parameters
according to the size and the geometry of the problem. In general, the more the
independent grid parameters, the higher the parallelism and more computer CPU
and storage can be saved. In order to explain the idea, consider the following two
figures:

In figure 1, there are three independent grid parameters for a two-dimensional
problem.

hs

hy hg
Fig.1
In figure 2, higher accuracy is needed near the point A. Therefore we can use six
independent grid sizes where hg and hs can be chosen to be smaller than others.

hg
hs

hy

fn fig fig
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TaBLE 1. Comparison of numerical results of three extrapolation methods

No. of | Richardson extrapolation Type 1 SEM - Type 2 SEM
split | max error CPU max error | CPU | max error | CPU
0 3.91E4 0.04 3.91E-4 | 0.04 | 391E4 | 0.04
1 2.44E-6 0.71 6.79E-6 | 0.52 | 6.79E-6 | 0.49
2 7.61E-9 13.60 1.90E-7 | 253 | 1.90E-7 | 2.09
3 3.23E-11 285.67 506E-9 | 1298 | 5.32E-9 | 741
4 1.41E-10 | 21.94
5 7.89E-12 | 57.11

TABLE 2. Comparison of computer storage needed by three ex-
trapolation methods

No. of split | Richardson extrapolation | Type 1 SEM | Type 2 SEM
0 162 162 162
1 1,769 339 339
2 16,956 945 945
3 149,063 2,135 2,135
4 1,250,370 4,410 3,430
5 2,048,543 9,051 5411

NUMERICAL EXPERIMENTS

Example 1: Consider the three dimensional Poisson equation:

Au = f , in Q=(0,1)°,
u = 0 , on 80
3
The exact solution is u = J] [:1:1- (1 —a;)cos (5-2”3'*)] Using the seven-point finite
=1

difference scheme with initial grid sizes hy = hg = hg = %, the results are recorded
in Tables 1—3.

TaBLE 3. Comparision of the degree of parallelism for three ex-
trapolation methods, N is the processor used

No. of | Richardson extrapolation | Type 1 SEM | Type 2 SEM
split | N max CPU N | max CPU | N | max CPU
1 2 0.33 4 0.13 4 0.13
2 3 12.94 10 0.38 10 0.38
3 4 272.01 20 1.42 20 0.67
4 5 e 35 . 35 1.44
5 6 56 e 56 2.54
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TABLE 4. Maximum relative errors

errQ errl err2 err3 errd
4.120E-2 | 4.125E-2 | 4.125E-2 | 4.125E-2 | 4.119E-2

errb errb errspl errRich
2.518E-2 | 2.498E-2 | 3.189E-3 7.535E-3

TABLE 5. Relative errors at some points

Coordinates | err0 errspl | errRich
(1/2,1/2) 8.55E-3 | 2.43E-5 | 3.93E-5
(3/2,1/2) 9.63E-3 | 1.03E-5 | 3.05E-5
(5/2,1/2) 5.09E-3 | 8.80E-5 | 4.36E-5
(7/2,1/2) 3.84E-3 | 1.37E-4 | 1.88E-5
(8/2,1/2) 1.18E-2 | 6.80E-5 | 7.23E-5
(9/2,1/2) 2.44E-2 | 7.85E-4 | 3.56E-4

Example 2: Consider the two dimensional Poisson equation:

Au = f , in Q=(0,5)x{0,1),
{ v = 0 , on Q.

The exact solution is u (z,¥) = zy (1 — ) (1 - %) €®¥. Using rectangular ele-
ments and choose six independent grid sizes h; (i = 1,2,- - -, 6) in five subdomains
Q(E=1,2,---,5).(Fig.3). Let up = u(hyhg, -~ he), u = u(hy, - %, - hg),
denote the maximum relative error of u; (¢ = 0,1, - -,6), of the splitting extrapo-
lation solution and of Richardson extrapolation by erri, errspl and errRich respec-
tively. The results are shown in Table 4 and Table 5.

he| o Qs Qs Q Qs

hy ho h3 hy hs

Fig.3

CONCLUSION

If there exists the asymptotic expansion (1), the numerical accuracy of the split-
ting extrapolation and the Richardson extrapolation methods are comparable, while
the former is superior in the sense of parallelism, computational complexity and
computer storage needed.
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