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1 Introduction

It is well known that the nonconforming finite elements are widely used in solving
elliptic boundary value problems, because they have fewer degrees of freedom, simpler
basis functions and better convergence behavior. As usual, we apply them with two
methods. One is the so called tolerance method, and the other is the penalty method.
But they both have some disadvantages: The -convergence order is lower than for
conforming elements with the same degree of piecewise polynomial interpolation if
the former method is used (cf.[1] and [2]). Using the second method, the convergence
order is only half of that of conforming elements with the same degree of piecewise
polynomial (see[3]). To increase the convergence order, the compensation method was
introduced in [4]. Through applying this method, the same accuracy order as for
conforming elements with the same degree of piecewise piecewise polynomial can be
obtained.

Additionally, the nonconforming multigrid method is also a very efficient method
for solving the elliptic boundary value problem. Its characteristic feature is its fast
convergence. Moreover, one can obtain an acceptable approximation of the discrete
problem at an expense of computational work proportional to the number of unknowns.
It is not only the complexity which is optimal, also the constants of proportionality
are so small that other methods can hardly surpass the multigrid efficiency.

In the present paper, we will give a new method by combining above two methods
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for the Wilson element, such that the accuracy order using Wilson nonconforming
element is almost the same as for a quadratic conforming element.

The paper is organized as follows. We will begin with a discussion of the
compensation method for the Wilson element. The intergrid transfer operator is
defined and its properties are discussed in section 3. In section 4, the k~Ilevel iteration
and nested iteration are given. The last section contains the error estimate for the new
method.

2 Compensation for the Wilson Element

For simplicity, the Poisson’s equation is considered:

{—Au:finﬂ

u=0on 09, 1)

where f € L?(2), and () is a rectangular domain. The variational form of the problem
(2.1) is: Find u € H}(Q), such that

a(u,v) = (f,v),Yv € Hy(Q), (2.2)

where

a(u,v):/Vqudw,
Q

(f,v):/ﬂfvdz.

For hi(k > 1) in a null sequence, let 7, be a subdivision of Q into rectangles P; 7541
can be obtained by connecting the midpoints of the edges of P € 73;,. Then hy = 2hg41-
In addition, we assume that 74(k > 1) satisfy the regular and uniformly conditions,
namely, there exist two constants o,, which are independent of P, such that

hi.p < chgp, by < vhip, VP €,

where kg p and hy, p denote the diameters of P, i.e. the length of the longest sides of
P, and of the smallest sides of P, respectively. hy = maxpe,, hrp.

Let Vi, be the Wilson finite element space associated with 7. For every v € Vi, it
has the following properties:

(i) v|p is quadratic polynomial;
(ii) v is continuous at the vertices and vanishes at the vertices along 6(;
(iii) The remainning two degrees of freedom are the mean values of second derivatives
9%(i = 1,2) for each P € 7.
It u,v € Vg, set

ap(u,v) = Z / vu 7 vdz,
P

PeTy

bi(u,v) = Z /ap{ﬁn[v] + Uy Ju] + %[u]['v]}ds,

Pery
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and
cr(u,v) = ag(u,v) + bg(u,v),
where
[w=ut—u",
iy O
n — an7

1 _
Up = E(UI +un)’

and n is the normal direction of 8P pointing in the “+” direction. The positive constant
8, which is independent of hy, will be determined later.

Now, a new discrete variational problem is given as follows.

Find uy € V%, such that

culup,v) = (f,0), Yo € Vi. @23

Obviously, if V4 is conforming, then by (u,v) = 0, i.e. the problem (2.3) becomes a
standard conforming finite problem.

For the tolerance method, the approximation solution uj} is obtained by solving the
problem: Find u}, € V4, such that

ax(ug,v) = (f,v), Vv € V. (2.4)

From [1], the following error estimates hold.
llu — uklle < Chalulmz(), (2.5)
llu ~ uillza() < Chiluln(e)- (2.6)

We can easily get the following lemmas.
Lemma 2.1 Ifv € Vi, then

/ u’ds < Chy'|ul2,
dp

holds (see [4]).
Lemma 2.2 If [vl} ,, = X pe,, [V[1.ps then [v1.n, is @ norm on V.

Theorem 2.1 The bilinear form ci(u,v) is not only uniformly Vy, elliptic, but also
bounded. So the problem (2.3) has a unique solution.

We omit the proof.
Theorem 2.2 If uy, is the solution of problem (2.3) and u € H3(S2), then there exists
a constant C independent of hy, such that

lu — ug|1.n, < Chilulsq,

|u - ulez(Q) < Chzlulgg,g.

Proof. We can prove this theorem by using Green’s formula on each element P in
Tt and a duality argument.
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3 The Intergrid Transfer Operator and its Properties

The intergrid transfer operator If_; is defined as follows. For any v € Vi1, I k.
satisfies following conditions:
(i) If A is a vertex of element P € 7, inside Q and a vertex of a element in 7;_;, then

(Te-1v)(4) = v(4).

(ii) If A is a common vertex of two elements P; and P in 741, then

1
(TE-10)(4) = S[v]p (4) + v]p, (A))-
If A is in the interior of a rectangle in 7, then
(Ii-1v)(4) = v(4).

(iii) I¥_,v = 0 at the vertices along (.
(iv) The remaining rest degrees of freedom are the mean values of the second
derivatives of v on P € 73.

We define a mesh-dependent energy norm by

lvlle == Ver(v, v).

From Theorem 2.1, we have the following lemma.

Lemma 3.1 The norm |v|y.p, is equivalent to the energy norm |jv||x.
Now, we give two properties of the operator I¥_,; proofs can be found in [7].

Property A. There exists a constant C, independent of hy, such that

ITE_1vllL2(0) < Clivllza) » Vv € Viy.

Property B. There exists a constant C, independent of hy, such that

IIE_ vllx < Cllvllk-1,Vv € Vi_y.

Assume that 0 < Ay < Xg-+- < Ay, and 64, ¢o, ..., dn, are the eigenvalues and
eigenfunctions of cx(-,-) with respect to (-, ), respectively. From the inverse inequality,
there exists a constant C*, such that

An < C* B2 (3.1)

o= Z::fl * c;¢s, then the discrete norm ||jv]|]s.% can be defined as follows.

i=Np,
Wolle =3 M5 e R

i=1

Obviously, {[[vfllo.x = llvllz2() lllvlllr = follk.
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4 The k-Level Iteration and the Nested Iteration

If 29 is an initial value of the solution; then the approximation MG(k, z, @) can be
obtained by solving following problem: Find z € Vj, such that

ck(2,v) = G(v), Yv € V4,G € V,

where Vk' denote the conjugate space of V}, and ¢, (u,v) is defined as in section 2.
If k=1, then 2 := MG(1, 2, G) is the solution using a direct method. For k& > 1,
zm are obtained by solving the equation:

(z: — zi—1,v) = A;l(G(v) —¢i(zi—1,v)), Yv € Vg,

where 1 < i <m, Ay < C*h;? (see (3.1)), and m is an integer to be determined later.
In addition, g, is obtained by a {(k — 1)-level iteration p times (p = 2,3), namely,

q0=0,
4= MG(k - 11qi—1>é)7 1<i<p,

where

G(”) G(Illcc—lv) — cx(2m, III:—-I'U)

cx (2 — 2m, IF_1v), Yv € Vi—y.

The approximate solution is MG(k, z0, G) := zm + I¥_, 5.
The full multigrid method is defined as follows. Let 4; is the solution obtained by
using a direct method. The approximation i (k > 2) is obtained, recursively, by

uf = I]_1d;-1,
u] = MG(j,ul_,,G), 1<1<r, Gv) :/C;fvdwldwg,
i = ul.

Here r is a positive integer to be determined later.

5 The Error Estimate

In this section, we will prove that the convergence order of the multigrid method with
compensation is almost the same as that of the conforming quadratic element.

Theorem 5.1 If the number of smoothing steps m is large enough, then the k-level
iteration is a contraction for the energy norm.
The proof is given in {7].

Theorem 5.2 If i, is the approzimation using the full multigrid algorithm and r is
large enough, then exzists a constant C, independent of k, such that

Jlu— dxllz2 < ChE(haluls.o + |ul2.0),
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e = aelli < Chi(hiluls.a + [ul2.0),

where we assume that u € H3(Q) N H(Q) is the solution of problem (2.2).
Proof: We only prove the first inequality because the proof of the second inequality is
simpler.

Let 7x—1 be the Lagrange interpolant operator. Then,

Iy (Rp—1u) = Te1u,
lu — Fr—1ullL2@) < Chilulz.q.

Thus,

llug — dxllz2o)
< e — ullzaqe) + llu — mem1ull 2@y + 1 F_g (Timau — G-l L2()]
CcH

3 2
< m(hklu‘&ﬂ + hilul2.0) -

Choosing v such that 1 — 2C+y > 0, we find

e — drllz2) < Chg(lula.o + heluls.o)-

The first inequality follows by using a triangle inequality.
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