Domain Decomposition Methods
with Strip Substructures

Monika Mréz !

Abstract: Domain Decomposition Method for finite element discretization of planar
elliptic variational problems with regular and discontinuous coefficients is analyzed.
The domain is divided into strip shaped subdomains. We construct Neumann —
Dirichlet substructuring algorithms. The approximate solution is obtained iteratively
by solving local problems associated with each strip and the global problem associated
with the coarse triangulation. Convergence of algorithms is almost optimal with
respect to the parameters of triangulations and independent of the jumps of
coefficients.

1 Introduction

Domain Decomposition Method for finite element discretization of elliptic problems
with discontinuous coefficients is analyzed. We introduce two level nested
triangulation. The domain is divided into strip shaped subdomains. We construct
Neumann — Dirichlet substructuring algorithm with coarse space.

The partition of the domain into such subdomains has several advantages. The
bandwidth of local matrices is narrow, which minimizes computations and memory
requirements. Also the structure of local problems is useful for vectorization of an
algorithm.

The substructuring preconditioners are usually constructed on subdomains (boxes)
defined by the coarse triangulation, cf. Bramble, Pasciak, Schatz (1986). The
convergence rate of iterative method which is depends on the condition number of
preconditioned system, is bounded polylogarithimcally in H/h. Here H and h denote
parameters of coarse and fine triangulations. Our algorithms have similar convergence
properties. The condition number of preconditioned system for strips is proportional
to (1 + In(H/h)). The related numerical experiments are included in Mréz (1995).
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The algorithms presented in this paper can be extended to 3-D case. Also
they are applicable to parabolic and nonlinear problems. The Neumann-Dirichlet
preconditioner can be used as inexact solver in Additive Schwarz Method. In such
situation we obtain optimal convergence and much simpler implementation. We can
construct substructuring preconditioner for boxes. Each strip is divided into boxes
and for each strip we apply our Neumann—Dirichlet preconditioner. The convergence
of such method is the same as for strips. All these extensions are analyzed in Mréz
(1995).

2 Model problem

We consider the problem of finding an approximate solution of the following elliptic,
boundary value problem.

For given a bilinear form a(-,-) and linear functional I(-) on H}(Q2) we want to find
u € HY(Q) such that

a(u,v) =I(v) Yve H} ), (1)

where {2 is a Lipschitz bounded domain in R2. For simplicity of presentation we assume
that Q2 is a polygon.

We will distinguish two cases for a(:,-).

bilinear form with regular coefficients

The bilinear form in this case is as follows:

_ 2 Ou Ov
a(u,v) = Z B, b;;)dm . (2)
=1 2 2

bilinear form with discontinuous coefficients

We consider the variational problem of the form (1) up to replacing a(-,-) by the
form k

af (u,v) = (m)i Ou Bvd 3
= Jo P 2 o ©)
i=1 T

The function p(z) is piecewise constant i.e
plx)=p; >0, z€Q;, ()

whel.*e 2; denote the strip shape subdomains consisting of elements (7, defined in
Section 2. The jumps of coefficients between subdomains may be large. This model
problem can be applied to the case when the function o(x) varies moderately on each
subdomain and is discontinuous between subdomaius. In this case the coefficient is
merely equal to the mean value of p(z) on the subdomain.

Let [(v) denote the linear form defined by

l(v) = (f, )20y = fﬂfvd;z: . (5)
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3 Finite Element approximation

A two level triangulation is defined on the domain . First, we construct a coarse
triangulation Qz that consists of shape regular (cf. Ciarlet (1978)), nonoverlaping
triangles 2’ of diameter of order H. In second step, we further divide each element
of the triangulation (1 into smaller, shape regular triangles of diameter O(h). They
form the fine triangulation .

Spaces of piecewise linear, continuous functions on Qg and ) are denoted by
VH(Q) and V"(1). The restriction to subspaces of functions vanishing on 9 is
denoted by V*(2) and V7 (£2) respectively. The corresponding approximate problem
for (1) is then:

Find u* € V(Q) such that

a(u*,v) =1(v) Yo e Vi) . (6)

Let {g{)?} be the set of standard, piecewise linear, nodal basis functions, thus V*(Q2) =
span{¢f}. In this basis, the discrete variational problem (6) can be rewritten as a

system of linear equations
Av=f, (M

where coefficients A;; = a(qzb;‘, #F) and f; = l(d)?) The matrix A is positive definite
and symmetric. The condition number of A is proportional to h=2.

In the same manner, we can formulate the discrete variational problem for the
bilinear form a?(,-) from (3). The condition number of AP is proportional to

max; p’ [
min; pJ "

4 Neumann—Dirichlet preconditioner — regular coefficients

In this section we construct a Neumann—Dirichlet preconditioner for the problem (2)
with regular coeflicients.

The domain Q is divided into N strips ;, ¢ = 1,..., N called strips. We assume
that the boundary of each strip comsists only of boundaries of elements from the
coarse triangulation 2 and there are no nodes of Qp inside the strip. The strip
; has common boundary only with at most two neighboring strips. This common
interface between two strips is called T';,

; =00;,N0Q41 -

Every point of I'; belongs to exactly two strips. The boundary of each strip consists
of the two interface lines I';_; and I'; and parts of O52.

Let us denote the odd strips by Dirichlet superscript {2 and even strips by Neumann
superscript Q. The bilinear forms a;(-,-) represents restrictions of a(-,-) to ;. In
order to distinguish the form a;(-,-) defined on Dirichlet or Neumann type strips we
will add suitable superscript to this notation. Thus bilinear forms aP(-,-) and af' (-, -)
are defined on Dirichlet or Neumann type strips respectively.

We define the local orthogonal projection P; of the space V*(Q;) N V() onto
Vot (%) by

a”i(Piuv ’U) = ai(u'v 'U) Vv € Vz)h(Q’L) s (8)
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and the local discrete harmonic function H;u with respect to bilinear form a;(-,-) by

a;(Hyu,v) =0 Vo € V() , (9)
Hu=u on 99); .

For any function V*(£2;) N V(Q) we have

u=Pu+ Hu.
Thus
a(u,u) = > o (w,u)+ Y (aP (Pu, Pu) + af (Hiu, Hiw)) . (10)
even i odd ¢

Dryja and Proskurowski (1985) constructed the Neumann-Dirichlet preconditioner
by omitting the last term of representation (10). Then the upper estimate of a{u,w)
by this preconditioner depends on H 2 since the Trace and Extension Lemmas were
used for strip shape subdomains. In order to avoid such dependence, the mechanism
of global transportation of information should be introduced into the definition of the
preconditioner (cf. Widlund (1988). To meet this requirement we include the term
a{Igu, Inu) to the definition of the preconditioner, where Iy denotes the nodal value
interpolation operator from V{*(Q) onto Vi (), defined by

(Tau)(x) = u(z) , (11)

if z is a node of the triangulation Q.
We are ready to define a bilinear form b(-,-) that corresponds to the Neumann-
Dirichlet preconditioner,

b(u,v) = Z aP (Pi(u — Tgu), Pi(v — Iyv)) +
odd i
+ Z alN(u — Igu,v— Iyv) + a(lgu, Igv). (12)
where
&{V(u, 1!) o= a;gv(u, 'l;) + H_Q("ll, l’)Lz(Q;_\') - (13)

Theorem 1 For any function u € VI'(Q), the following inequalities holds

H )
m (1+1n 7)_1b(u,u) < alu,u) < M blu,u), (14)

where the positive m and M are independent of H and h

The proof of this theorem is given in Mréz (1995).

To solve the linear system (7), we use a preconditioned gradient method (PCG)
(cf. Concus, Golub, O’Leary (1976)). In each step of the PCG method the system
corresponding to the preconditioner is to be solved:

Find u € V() such that

blu.v) =g(v) Yve VH(Q). (15)
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The finite element space V() is decomposed,
Vi) =V @ e V@),

where Vi(Q) is a subspace of V*(§2) consisting of functions vanishing at the nodes of
the coarse triangulation Q.

The algorithm of solving the problem (15) is as follows.
Algorithm 2

1. Construct the system for the nodal basis functions ¢;’ connected with the
nodes of the interiors of QP . For such functions IHQS;-L = 0, hence (15)
is reduced to separate subproblems of finding local projections Pyw, i =
1,3,... by solving

al (Piw,¢}) = g(6h) VeI € VHQP).

These systems correspond to solving the subproblems individually for
each strip $0; with homogeneous Dirichlet boundary conditions on
interface lines T';.

2. We build the system associaled with ﬁfv excluding nodes of the coarse
triangulation Qg . For such basis functions I H(]ﬁ? = 0, thus we search for
won QN i =24,... by solving

il (w, df) = g(8}) = D ol (Pw, ¢) Vo) € VIO
odd i

These systems correspond to solving the subproblems individually for
each strip QF with Neumann boundary conditions on interface lines
T';, excluding the nodes of the triangulation Qg, where we impose
homogeneous Dirichlet boundary conditions.

8. Construct the system for basis funclion ¢§{ from VOH (Q). Note that
gbf - 1T ngﬁf = 0, thus in order to find the interpolation Igu we solve the
global system

a(lmu, ¢ ) = g(¢f) Véf € V()

4. In Step 1 the projections P;w have been computed, so now we find the
solution u on.QP. The discrete harmonic function H;w is obtained from
the system.

af (Miw,#}) =0 Yo} € ViHQP),
and then w = H;w + P;w or we can solve the system
aP(w,8}) = g(#}) V] € V3(QP).

The boundary conditions are to be imposed so as to fiz the values of w
on the interface lines T'; as calculated in the previous Step. In the second
case we do not need to keep the values of P;w in all nodes of Q; after
Step 1 is completed.

The solition u on Q is obtained from the formula

u=w+ Igu.
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This algorithm admit quite high level of coarse-grained parallelism. Steps 1, 2 and
4 consist of solving a number of small separate systems. Furthermore Steps 2 and 3
may be performed concurrently.

5 Neumann-Dirichlet preconditioner — discontinuous coefficients

In this section we consider the differential problem with coefficients constant on each
strip Q;

We will use the notation and definitions introduced in previous Section. The
restriction of the bilinear form a®(-,-) to €; is denoted by af(:,-). The definition
of projection P/u and discrete harmonic function Hfu is the same as in (8) and (9)
with respect to the bilinear form af(:,-). The idea of construction of the Neumann-
Dirichlet preconditioner is similar to that for regular coefficients. In order to avoid
the dependence on jumps of coefficients, the weights are introduced into Neumann
problems on even (Neumann type) strips. We first define the function u? on 9Q and
onl;,¢e=1,...,n—1

u?(z) = (p4 i1 Y2 (u(x) — Igulz z i

The function Hu? € V() is a local discrete harmonic function defined on QY
with respect to the bilinear form

a; (u,v) = (Vu, V”)L?(Qg") + H_Z(%?J)LZ(Q;.V) ) (17)
ie.
aY (Hiwfv) = 0 Yo € ViH(OY),
Hiu(z) = u’(z), «cdl.

The bilinear form 7(-,-) that corresponds to the Neumann-Dirichlet preconditioner
for the case with piecewise constant coefficients is defined by

P(w,v) = > pi(VPi(u—Igu), V(v — Igv)) 20, +

K]

+ > &Y (Hw?, Hiv®) + o (T, Inv) | (18)

even i

Theorem 2 For any function u € VJ(Q), the following inequalities hold
H,
m{(l+1In —h~) b (u, u) < @ (u,u) < M b°(u,u), (19)

prom'de('i 'coeﬁicients of the bilinear form af(-,-) are constant on strip Q;, (see (4)).
the positive constants m and M are independent of H, h and the Jumps of p;.

"This theorem is proved in Mréz (1995).
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6 Neumann-Dirichlet preconditioner as inexact solver in ASM

In this section we apply the Neumann—Dirichlet preconditioner to Additive Schwarz
Method as inexact solver for local problems. Such approach allow us to construct a
structural algorithm with optimal estimates on convergence. We use the framework
of ASM developed by Dryja and Widlund (1990). The algorithm is presented for the
case of regular coeflicients.

The space V() is represented as a sum of two spaces

Vo' () = Vo + Vi = Vi (@) + 151(9). (20)
Let us define inner local products b;(-,-), i = 0,1
bO(uv'U) = a’(u’ v)a U,V € VOH (Q) s
b1(u,v) = Z aP (Piu, Piv) + Z al¥(u,v) w,v € V), (21)
odd i even i
where @2 (u,v) was introduced in (13).

Let 7; denote the approximate projections from Vg (€2) to V; with respect to bilinear
form b;(-,+)

b (Tiu,v) = alu,v) YveV; (22)

If the operator T = Ty + 71 is invertible then (6) is equivalent the following auxiliary

problem:
Find u € V{*(Q) which satisfies
Tu=g (23)

where the right hand side g has to be chosen so that the auxiliary equation (23) has
the same solution as (6).

Theorem 3 The operator T : VI(Q) — V(Q) is symmetric and the following
estimates hold

m a(u,w) < a(Tu,u) < M a(u,u) Vu € HQ), (24)
where constants m and M are independent of H, h.

The proof of this theorem can be found in Mréz (1995).
In each step of PCG method (cf. Concus, Golub O’Leary (1976)) we have to calculate
the function w € V()

szu:wO—l—wl, wiz']}u,

where u € V§(Q) is a given function. The algorithm of finding wo = Tou involves
solving the global problem defined on the coarse space Vi (Q2), see Step 3 of Algorithm
1. Let us now outline the algorithm of finding w; = Tyu.
Algorithm 2
1. Construct the system for the nodal basis functions ¢;? associated with the

nodes of interiors of QF

aP (Pywy, o) = a(u,¢f) Vel € VIHQP).
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2. Build the system for the nodal basis functions qb;-‘ associated with the

nodes of ﬁiv Thus we compute wy on ﬁfv 1 =2,4,... by solving

& (wy, o) = a(u, ) — Z apP (Piwy, 41) Vol e VHQN) N Vo ()
odd i

It reduces to solving the subproblems in each subdomain QY with
Neumann boundary conditions on interface lines I';, and homogeneous
Dirichlet boundary conditions on 0X2.

8. In Step 1 the projections Pywy have been computed, so now we find
the function wy on QZD. This is done in the same way as in Step 4 of
Algorithm 1 .
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