Domain Decomposition and Multilevel
Techniques for Preconditioning
Operators

SERGEI V. NEPOMNYASCHIKH*

1 INTRODUCTION

In recent years, domain decomposition methods have been used extensively to effi-
ciently solve boundary value problems for partial differential equations in complex
shape domains [4, 13, 16]. On the other hand, multilevel techniques on hierarchical
data structures also have developed into an effective tool for the construction and
analysis of fast solvers [2, 5, 15, 17]. But the direct realization of multilevel techniques
on a parallel computer system for the global problem in the original domain involves
difficult communication problems. In this paper, we present and analyze a combina-
tion of these two approaches: domain decomposition and multilevel decomposition on
hierarchical structures to design optimal preconditioning operators.

Let Q C R? be a polygon. In the domain @ we consider the boundary value

problem

%

~ 0 ">%> @ = flz), z€Q
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u(z) = 0, z € T, (1.1)
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where )

ou du
o = Z aij(m)—az;cos(n,m,-)

i,j=1

is the conormal derivative, n denotes the outward normal to I', and T'g is a union of
a finite number of curvilinear segments, I' = T'qo U T, Ty = T'g. Here Ty denotes the
closure of I'g.

By H(Q,To) we denote the subspace of the Sobolev space H'({2)

HYQ,To)={ve H'(Q)|v(z) =0, z€ To}.
We introduce the bilinear form a(u,v) and the linear functional {{v) :

2

a(u,v) :h/ ( Z aij(m)%% + ao(a:)uv> dx—i—/cr(x)uvdx,

i,j:l Fl

l(v):/f(w)vdaz.
Q

Let us suppose that the operator coefficients and the right-hand side of the problem
(1.1) are such that the bilinear form a(u, v) is symmetric, elliptic, and continuous on

H(Q,To) x HY(Q,To), ie.
a(u,v) = a(v,u) VYu,v€ HYQ,Ty),
aOHU”%Il(n) <a(u,u) < al”“”%{l(n), Vu € H'(Q, To)
and the linear functional I(v) is continuous on H!(£2, T'g):
()] < allullm(a), Yue H'(Q,To).

The generalized solution v € H!(Q,To) of (1.1) is, by definition, a solution to the
projection problem [1]

u€ HYQ,Ty) : a(u,v) =1(v), Yve HYQ,Ty). (1.2)

We know that under these assumptions for a(u,v) and I(v) there exists a unique
solution of {1.2).

Let Q be a union of n nonoverlapping subdomains £;,

Q= Qi: anQ]:Q))Z#]:

T

1

ii

Wl_lere €2; are polygons with diameters on the order of H. Let us consider a coarse grid
triangulation of

n M

B A Ao ~(0)

=, =7,
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diam (r{) = 0(H)
and we refine Qg’i several times. This results in a sequence of nested triangulations
Q%J,O: th,l) o '»Qz}'Z,J

1

such that

M®
QZ’»‘ = U 7_;2'(,,;)1]{": 011:”')‘]1
=1

(I;H) (’;) into four con-

where the triangles 7’ are generated by subdividing triangles 7
gruent subtriangles by connecting the midpoints of the edges.
Introduce the spaces

Wio CWi1 C---CWiy = Hp(),
VioCVii C---CViy = Hu(ly), (1.3)

=08, i=1,2---,n.
Here the space W; i consists of real-valued functions which are continuous on § and
linear on the triangles in Qf x- The space V; ; is the spacé of traces on I; of functions
from W, :
Vig = {goh | goh = Uhlr", with v € VVi,k} .
We define the space Hp(2) of real continuous functions which are linear on each

triangle of Q" and vanish at T.
Let us consider the projection problem

uP € Hy(Q) : a(ul,v") =1(v"), Yo" € Hy(Q) (1.4)

which is an approximation of the problem (1.2).

Each function u® € H 2(£2) is put in correspondence with a real column vector
u € RY whose components are values of the function u” at the corresponding nodes
of the triangulation 2. Then (1.4) is equivalent to the system of mesh equations

Au = f,
(Au,v) = a{u®, "), vul, vt € Hy(Q), {1.5)
(f,v) = "), W' e Hy(Q),

where u” and v are the respective interpolations of vectors u and w; (f,v) is the

Euclidean scalar product inR".
The goal of this work is to construct a symmetric positive definite preconditioning

operator B for (1.5) so as to satisfy the inequalities
e1(Bu, u) < (Au, u) < ca(bu,u) (1.8)

where the positive constants ¢; and ¢y are independent of k and H'; the multiplication
of a vector by B~ should be easy to implement.
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Using a combination of Additive Schwarz and Fictitious Space Methods, optimal

preconditioning operators have been constructed in [11, 12, 13] for the case of arbitrary
(unstructured) grids. However, that construction involves explicit extension operators
whose implementation for three dimensional problems is optimal from the arithmetic
cost and the condition number points of view but difficult for practical realization.
The main goal of this work is to construct, using the hierarchical structure (1.3), a
robust optimal preconditioning operator. One of the crucial points in [11, 12, 13] and
this paper is the use of non—exact solvers in subdomains and explicit extension oper-
ators.
It means, to construct optimal preconditioning operators, we can design norm pre-
serving operators of functions given at I'; into €; with the optimal arithmetic cost
(2 number of arithmetic operations should be proportional to a number degrees of
freedom) and then, instead of exact solvers in subdomains, we can use any spectrally
equivalent preconditioning operators. Optimal extension operators have been pre-
sented in [8, 9, 11] for unstructured grids and robust explicit extension operators on
hierarchical data structures in [5, 14].

The paper is organized as follows. In Section 2, using Additive Schwarz Method,
we describe general construction of a preconditioning operator with local multilevel
preconditioning operators. In Section 3, we present an optimal multilevel extension of
grid functions from boundaries subdomains into inside subdomains. In Section 4, we
propose an optimal interface preconditioning operator at the boundaries of the subdo-
mains which involves a multilevel decomposition and corresponding explicit extension
operators at interfaces.

2 DOMAIN DECOMPOSITION - ADDITIVE SCHWARZ-METHOD

To design the preconditioning operator for system (1.5), we use the additive Schwarz—
Method [7] and employ the main idea of the construction of preconditioners from [13]

for the hierarchical grids. Denote by I?I n (£2;) the subspace of Hy(§)

0
Hi () = {u" € Hy(Q:) | ut(z) =0, zely}
and define the local preconditioning operators B; such that
o [s] .
B; : Hu () = Hp (8),
C'o‘”uh”%ﬂ(nl) < (Biw,u) < ‘3‘4H“h“%11(n,) vu” Ef(:)lfh (),

where c3, ¢4 are independent of h and H. We hereafter use the same notation for an
operator and its matrix representation. For instance, to define B;, we can use the

so-called BPX~preconditioners [3]. To do it, denote by { fl(k)} nodal basis functions
from the k—th level and define

J
-1, h __ L
Bt =30 3 (W )L i, (2.1)

k=0 °
f!(k)eHh(Qi)
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Let us assume that we can define the extension operators t;
t;: Vig— Wi
such that

ut(z) = ¢h(2), z €Ty, (2.2)
lti™ ) < eslle™ ey Vo € Vi,

with cs independent of h and H. Here ||¢"|| m/2(r;) is the norm [10] in the Sobolev
space HY/?(T;)

1™ 322 —H/ z)) da,+// m-w ") AP A dedy.

Then, we can define the extension operator ¢
t: Hu(S) = Hy(Q),
where Hj(S) is the space of traces of functions from H,(Q2) at S
n
=Jr
i=1
and for any " € Hy(S)
tph = uh,
ulb(z) = o"(z), z€S8,
ey < esllellmirms)
Here
7
”S"h”%{lﬂ(s) = Z“‘Ph”}p/z(r )
i=1

The operator ¢; from (2.2) is constructed in Section 3.
Let > satisfies the following inequalities

C6||50 ”H1/2 5 = Z% < C’illﬂoh”%rl/Z(s) Vo € Hi(S), (23)

where c¢g, ¢; are independent of h and H. Then, according to [11], we can define the
preconditioning operator B as follows

0
B! -1
Bl = v +1Y f (2.4)
B!

Here 0 is the null-matrix which corresponds to nodes of the triangulation Q”* at S and
B; is from (2.1).
The following theorem holds
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Theorem 2.1 If operator B is obtained from (2.4), then the constants c1,cq in (1.6)
are independent of h and H .

3 MULTILEVEL EXPLICIT EXTENSION OPERATORS

The main goal of this section is to construct a robust operator t; from (2.2). In this
section, we omit the subscript 1.
To design the extension operator

t: Vy— Wy,

we follow to [5, 14]. Denote by gp(k),i =1,2, .-, Ng, the nodal basis of V;, and denote

(2
by @z(k) the one-dimensional subspace spanned by this function gogk). Define

Q(k) Ly(T )__)q)(k)

the L2 orthogonal projection from Ly(T') onto @gk) and denote
N
& :ZQEM7 E=0,1,---,J—1.

For k = J we define Q as the Ly orthogonal projection from Ls(T) onto V.
The following lemmas hold [14].

Lemma 3 1 There exists a positive constant cs, independent of h and H. such that
for any ©" € V; we have

1
h12 2 2
HSDOHHl/Z(F) + E”SDﬂILg(P) + [SD?IHI/E(I‘) < CS”SDh”i[l/z(p)»

where

oh = Qoph, o = ph — b (3.1)

h 12 x K 2
|801 IHI/Z(F):// SD( y)) " ddy.
T

Lemma 3.2 There exists a positive constant cg, independent of h and H, such that

Here

b1 + 7 (w1, m+22 Gk~ Goor)b m) < colle ey

where ¢f, o are defined by (3. 1).

The const;iglction of operator ¢ is based on the decomposition from Lemma 3.2.
Denote by 2;"’,i = 1,2,--., L, the nodes of the triangulation Q (we assume that
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nodes .z( ) are enumerated first on I' and then inside 2) and define the extension
operator t in the following way. For any ¢* € Vy set

v = Qop”, (3.2)
ph o= (Qr— Qr-1)et, k=1,2,, '
Then
=06+ 9]+ Yl
Define the extension u,’; € W, as follows
By = e st
0\ ll’ :LE()) er,
. {(3.3)
: k
bp®y = § vk, ot
we(z;’) = 0 25 ¢r
3 7 3
k=1,2,.--,J.
Here 1 is, for instance, the meanvalue of the function %§ on T, namely
- 1 Yo
U= 0 W
Ny P
Define
toh = ul =l + b ol (3.4)

Remark 3.1 We can use the Ly orthogonal projections from Ly(T) onto Vi, instead of
Qu,k=0,1,---,J—1. But in this case the cost of the decomposition (3.2) is expensive
(especially for three dimensional problems).

Theorem 3.1 There ezists a positive constant ¢y, independent of h and H, such that
el < crolle™ ey Yo" € Vi

Here the operator t is from (3.2)-(5.4).

Remark 3.2 Ii is obvious that

k
(e Nuam o
(‘Pz@! 9’95)1:2(11) '

QWph =

and the cost of the action of t and t* is proportional to the number of nodes of the grid
domain.
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4 INTERFACE PRECONDITIONING OPERATORS

In this section, we construct an optimal interface preconditioner in the space Hz(S)
which satisfies (2.3). To do it, we use the idea of Additive Schwarz Method at interface
S from [13]. Let S be a union of K nonoverlapping edges E; of the triangulation Qf

K
S:UEj’ EjﬂEiZQ), i# 7.
Jj=1

Split Hx(S) into a vector sum of subspaces
Hy(S)=Us+Ur+ -+ Uy, (4.1)

where Uy is the coarse space which consists of continuous functions linear on the edges
E;,j=12,...,K,and Uj, j = 1,2,..., K, correspond to E; and are defined below.
Denote by

Uy = {¢" € Hn(S)] ¢"(z) =0, & ¢ By},
k) oy o
U "V’*‘lE; k=0,1,....J

For any edge Ej; we define the explicit extension operator 7;
70 U7 — Hy(S)

as follows. Denote by go( 1), 1= 1,2,. I( ) , the nodal basis of U( ) (the functions
gog 1) differ from the functions go( ) from Sectlon 3 only at the end points of E;) and

denote by @é-’) the one-dimensional subspace spanned by this function «,9( ). Denote
by

k 3
Q)+ Lo(Bj) —» @
corresponding L, orthogonal projection. Set

I(k)

(h) ZQN’ k=0,1,---,J~1,

and define Q s as the Ly orthgonal oprojection from L»(E;) onto U ) Now we can

define the extension operator 7; according to (3.2)-(3.4). For any ¢* € U}J) set

(’)l = ~§0)¢h’ (42)
vho= @ -QF e, k=12, '
and
o [ "), 2P e
u, = (4.3)
(k)
07 z; gEJ‘ k:o'l!'“)‘]v

A — ok h
Ti¥ *U0+Uf+""+u§.
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Define
Uj = (73 -+ Tjﬁj.

Then from Theorem 3.1 and [13] we have the following theorem concerning decompo-
sition (4.1).

Theorem 4.1 There ezxists a positive constant c1y, dependent of h and H, such that
for any function ¢* € Hy(S) there exist 30;.’ eU;, j=0,1,..., K, such that

o+l ok = ot
llsaé’ll%p/z(s) + ||80’f|112£p/2(5) +o ”S"]}(”%{l/ﬂ(s) < Cll“‘.f’hlhznp/z(s)
Let the operator >, generates an equivalent norm in Up, namely
cralle” |13 <O 9,0) < sl s, Ve €Uo (4.4)
HM2(S) = ALyg? ¥ = H2(5) : .

where ¢19, ¢15 independent of h and H. Define local preconditioners for U;, j =
1,2,..., K. Denote by }i‘j and ij the BPX-like preconditioners in the spaces U] and
Uj;, respectivly
o —1 .
Zi = S @ A, o) Ve €Ty,
Osup lpg»i-)CEj

Mm

k

k k ~
(0", o ey 0f Ve €U

Mk.

YDA

k

Il

0gup gog.f‘i)nEj #0

Then, define the interface preconditioning operator Y in the following way
1 + K s =1 —~—1
2=t 0, Hn, ) (4.5)
J:
Here 23' is a pseudo-inverse of Y, from (4.4), 7; is obtained from (4.2), (4.3), and

o —1 .
we extend operator 3 . by zero outside Ej. The following theorem holds.

Theorem 4.2 If operator 5. is defined from (4.5) then the constants c, c7 from (2.3)
are independent of h and H.

Remark 4.1 The method suggested in this paper can be generalized evidently for three
dimensional problems.

Remark 4.2 Using combinations of the presented technigues and techniques from
[10], effective preconditoning operators for elbiptic problems with discontinuous co-
efficients can be consiructed.



202

Domain Decomposition and Multilevel Techniques

References

(1]

(2]

[3]

[4]

7]

(8]

9]

[10]

[11]

J-P. Aubin. Approzimation of elliptic boundary-value problems. Wiley-
Interscience, New York, London, Sydney, Toronto, 1972.

J. H. Bramble. Multigrid Methods. Research Notes in Mathematics Series. Pitman,
Boston-London-Melbourne, 1993.

J. H. Bramble, J. E. Pasciak, and J. Xu. Parallel multilevel preconditioners. Math-
ematics of Computation, 55(191):1-22, 1990.

M. Dryja and O. B. Widlund. Multilevel additive methods for elliptic finite ele-
ment problems. In W. Hackbusch, editor, Parallel Algorithms for Partial Differ-
ential Equations, pages 5869, Braunschweig, 1991. Vieweg—Verlag. Proc. of the
Sixth GAMM-Seminar, Kiel, January 19-21, 1990.

G. Haase, U. Langer, A. Meyer, and S. V. Nepomnyaschikh. Hierarchical extension
and local multigrid methods in domain decomposition preconditioners. East-West

J. Numer. Math., 2(3):173-193, 1994.

W. Hackbusch. Multi-Grid Methods and Applications, volume 4 of Springer Series
in Computational Mathematics. Springer—Verlag, Berlin, 1985.

A. M. Matsokin and S. V. Nepomnyaschikh. A Schwarz alternating method 1n a
subspace. Soviet Mathematics, 29(10):78-84, 1985.

A. M. Matsokin and S. V. Nepomnyaschikh. Norms in the space of traces of mesh
functions. Sov. J. Numer. Anal. Math. Modelling, 3:199-216, 1988.

S. V. Nepomnyaschikh. Domain decomposition and Schwarz methods in a sub-
space for the approzimate solution of elliptic boundary value problems. PhD the-
sis, Computing Center of the Siberian Branch of the USSR Academy of Sciences,
Novosibirsk, 1986.

S. V. Nepomnyaschikh. Domain decomposition methods for elliptic problems with
discontinuous coefficients. In R. Glowinski, Y. A. Kuznetsov, G. A. Meurant, and
J. Periaux, editors, Domain decomposition methods for partial differential equa-
tions, pages 242-251, Philadelphia, 1991. SIAM. Proceedings of the 4th Interna-
tional Symposium, Moscow, 1990.

S.. V. Nepomnyaschikh. Method of Splitting into Subspaces for Solving Ellip-
tic Boundary Value Problems in Complex—form Domains. Sov. J. Numer. Anal.
Math. Modelling, 6:151-168, 1991,

[12] S. V. Nepomnyaschikh. Mesh theorems on traces, normalization of function traces

(13]

and their inversion. Sov. J. Numer. Anal. Math. Modelling, 6:1-25, 1991.

S. V. Nepomnyaschikh. Decomposition and Fictitious Domains Methods for El
liptic Boundary Value Problems. In T. F. Chan, D. E. Keyes, G. A. Meurant,
T.S. Scroggs, and R. G. Voigt, editors, 5th Conference on Domain Decomposition
Methods for PDE, pages 62-72, Philadelphia, 1992. SIAM.



S. V. Nepomnyaschikh 203

[14] S. V. Nepomnyaschikh. Optimal multilevel extension operators. Preprint SPC
95.3, Technische Universitat Chemnitz—Zwickau, Fakultit fiir Mathematik, 1995.

[15] P. Oswald. Multilevel Finite Element Approwvimation: Theory and Applications.
Teubner Skripten zur Numerik. B. G. Teubner Stuttgart, 1994.

[16] P. Le Tallec. Domain Decomposition Methods In Computational Mechanics. Com-
putational Mechanics Advances (North Holland), 1(2):121-220, Feb. 1994.

[17] J. Xu. Iterative methods by space decomposition and subspace correction. SIAM
Review, 34:581-613, 1992.



