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1 Introduction

For a fighter aircraft, the flow quality at the inlet can have a large impact on the
performance of the propulsion system. It is obvious that the flow quality depends not
only on the shape of the inlet, but also on the shape of the forebody and the inlet
mounting position. So the integrated solution of internal and external flows is required.

Solutions of the Euler equations can give a more physical representation of inviscid
subsonic, transonic and supersonic flowfields than potential flow methods. Some
important phenomena such as the vortex in a S-shaped inlet, separation induced by
shock, can be nicely modeled with the use of Euler equations. Furthermore, solutions of
Euler equations are considered as a stepping stone before the solution of time averaged
Navier-Stokes equations can be attempted.

However, there are many difficulties to solve the 3-D Euler equations for complex
geometries, such as grid generation, computer memory size, speed limitation and so
on. This paper presents an Euler code designed for integrated combinations. The code
is based on a finite volume Runge-Kutta method [1, 2]. In order to relieve the computer
memory requirement, a domain decomposition technique is employed. This also makes
the mesh generation much easier. Iterations are performed for each zone in turn. A
newly-designed model of a fighter forebody-inlet combination and a missile model
have been used to validate the code. Satisfactory results have been obtained and the

solution cost is affordable.
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2 Numerical Algorithm

The finite volume scheme is derived from the integral form of the Euler equations

2/Wdﬂ+ F-fids=0 (1)
ot Jo o0

where {2 denotes a fixed region with boundary 99 and outward normal 7, w represents
the vector of conserved quantities, and F' is the corresponding flux tensor,

p puf+ pvf + p’wE
pu (puu +p)i+ pm)j + puwk
W=|mw|, F= pvuz + (pvv + p)j + pvwk (2)
pw pwui + pwvj + (pww + p)k
€ (e + p)ui + (e + p)vj + (e + p)wk

where p and pare the fluid density and pressure, u,v,w are the Cartesian velocity
components, i, J, E denote the unit vectors of the Cartesum coordinate system, and e,
the total energy linked with other variables by the equation of state

= (7= 1)e - 5p(u? +97 + w?) 3

v is the ratio of specific heats.

The computational domain ) is divided into hexahedral cells. Values of the
dependent variable W are defined at cell centers. A discrete approximation to the
spatial terms yields

d = s
;j'i(vi,j,k “Wijk) +Qijr =0 (4)

where V; ;1 is the (4,7,k) cell volume. This equation represents the discrete flux
balance. The discrete flux term @); ;,x represents the net flux out of the cell,

6
Qi =Y (F-S) (5)
=1

where Sj(1 = 1,2,---,6) denotes the Ith surface vector of the (2,7, k) cell, and the flux
F} are evaluated at the {th surface of the (2,7, k) cell. B is usually calculated using the
averages of the quantities Wz, 5.& from adjacent cell centers.

The present finite volume spatial discretization reduces to a central-difference
scheme which is formally of second-order accuracy for smooth grids. In order to
suppress its well-known tendency for odd-even points decoupling, to capture shocks

and to minimize pre- and post-shock oscillations, an adaptive dissipation term Dz ik
is added to the system

(V,J k- W i, k) + Qz,], ,J,k, =0 (6)

This dissipation formulation uses blended second and forth differences in each of the
three parametric directions [1].
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To integrate the system (6) of ordinary differential equations, the present code uses
Runge-Kutta time stepping schemes [1, 2]. Several convergence acceleration techniques
like local time stepping, enthalpy damping and implicit residual smoothing are adopted

[2].

3 Grid System and Flow Solution Coupling

In the present approach, several computational zones are used to model integrated
flowfield. For example, zone (I) is the subdomain forward of the inlet highlight;
zone (II) is the subdomain of the internal inlet and diffuser; zone (III), the external
region aft of the highlight. The computational grid system of each zone is generated
independently by means of TTM [3].

The flow solutions are execute on each zone in turn. Separate solutions are coupled
by interpolating the fluxes across the interface between adjacent zones during the
in two steps. First, for each zonal boundary cell, a ghost point is introduced in the
neighboring zone. The ghost point is located in the plane formed by the neighboring
zone boundary cell centers but has the same y, z values as the present zonal boundary
cell centers. The flow values at ghost points are determined by interpolation using the
values of neighboring zone. The second step evaluates the fluxes across the interface
by interpolation using values of the point of the present cell and its ghost point.

The treatment of other boundary conditions is the same as that in the literature

[4].

4 Flow Solution Algorithm

The flow computations are initiated by assuming uniform in coming flow quantities.
If this coming flow is supersonic, then the flow field inside the inlet is initiated with a
subsonic uniform flow assuming there is a normal shock located right at inlet entrance.
After that several iterations have been performed for one subdomain, the flow values
are updated and the flow solution is stored in a data file. Then the computation shifts
to another subdomain. A sequence of iterative updates for all subdomains is referred to
as a ‘cycle’. Usually hundreds of cycles are required to achieve a satisfactory, converged

solution.

5 Numerical Results

The first example is a forebody-inlet combination model. The flight conditions are:
My, = 2.047, angle of attack a = 0°, and the engine mass ratio m = 0.94. The S-
shaped inlet is a rectangle at the entrance and changes into circle at the exit. Even
though the grid is very coarse (13 x 17 x 15 for zone (I), 9 x 23 x 15 for zone (II), and
43 x 19 x 10 for zone (IIT})), the result agrees with the design requirement.

The second example is a total missile-inlet combination model. The computational
domain is divided into eight subdomains. The total grid number is 38495. The following
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flight conditions have been modeled: 0 M, = 2.0, = 0%, 7% = 0.98
My =2.0,a=1%m = 0.98

My = 2.0,a = 2% m =0.98

This result is also very satisfactory.
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