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Abstract: Many problems in mathematical economics, engineering and mechanics
reduce to large, sparse, unstructured, and poorly conditioned optimization problems.
Because of their size and lack of structure, these problems are hard to solve by
classical and global methods which are not adapted to modern parallel computers.
In this setting, decomposition methods are very attractive, because the solution of
the global problem can be reduced to the iterative solution of many subproblems of
smaller size. These techniques are designed for exploiting the full power of modern
parallel computers, because of the built-in parallelism of the algorithms and the
character of the associated data. In this paper, we are interested in linear and
nonlinear elliptic problems, and we present two additive algorithms based on the
proximal techniques. They yield two overlapping additive domain decomposition
methods: Prozimal-Jacobi method and Prozimal Schwarz methods. These methods can
also be viewed as regularized versions of Additive Schwarz methods. In order to validate
these algorithms, some numerical results are given for the homogeneous Dirichlet
problem.

Keywords: Domain Decomposition Methods, Additive Schwarz Methods,
Proximal Techniques.

0.1 INTRODUCTION

The main characteristic of decomposition algorithms in convex programming
is the splitting of a large-scale problem into a set of reduced size subproblems
which may be solved either in parallel or in sequence. Very often, the structure
of system induces a splitting of the variable set in disjoint subsystems yielding
some coupling constraints. In our approach, the subsystems may overlap, but
the advantage is that there are no artificial coupling constraints. The efficiency
of the decomposition methods depends not only on the specific properties of the
objective functions as convexity, smoothness or separability but mostly on the
degree of the coupling between the subsystems.

Besides the motivation of reducing the size of the problems appears the
possibility of decentralizing the optimal decision among the local subproblems
as in an ideal hierarchical organization. It is well-known, see [1], that most
classical approaches perform only a partial decentralization and need a heavy
coordination upper level to build a solution from the local proposals. This is
due to the lack of uniqueness of subproblems solutions which in turn is a
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direct consequence of the non-smoothness of the coordination function. It is
then natural to introduce regularizing terms in the decentralized process to
cope with both non-uniqueness and non-smoothness as in the proximal point
algorithm [11].

In this paper we are interested in solving the following convex problem:

minf(v), KCH (0.1)

where the function f is proper convex lower-semi-continuous, H a finite
dimensional Hilbert space H and K a closed convex subset of H such that
ridom fNri K # B. We suppose that H = Y 1o H; and K =Y ;2 K;, K; C Hi.
The problem (0.1) is equivalent to the following one:

min F (Z ) (0.2)

vi€H;, i=0,....m £
=0

where F = f + xx with xx is the {0, co}-indicator function of the subset K.
In this case, we can use parallel methods (at least m processors) to solve the
problem (0.2).

To solve a partial differential equation or a variational inequality often is
equivalent to minimizing an energy function. In practice, there are different ways
to decompose this energy function and to decompose the space of minimization,
see [5], [13] and the references therein. In order to illustrate some of the possible
ways, let us consider the following homogeneous Dirichlet problem:

{—Au = f inQ

u 0 on 6 (0-3)

Where Q is a bounded domain in JR® and 8 its boundary. The problem (0.3)
can be reduced to the following one

{'l'élII{l F(v) (0.4)

where the function F is defined by: F(v) = [,(|Vv|® - fv)dz and H =
1 ; : 2

H3() N Vi, Vi being the finite element space. Space decomposition (SD) can
l?e done in different ways. For example, the finite element space itself is the
linear span of the finite element basis, therefore it can be easily regarded as
the: sum of subspaces. The multilevel method is another way to decompose a
finite element space. In the overlapping DDM, we decompose a domain Q into
overlapping subdomains Q;, i = 1, ..., m, this means that Q = U, ;, and for
each ©Q;, there exists a subdomain ; such that Q; N Q#0. 1 tl:g subdomains
overlap uniformly, it is known that, see [6l,

HY(Q) = Hy(R) + HY (@) + .. + HE(Qm) (0.5)

The cen‘tral idea to comstruct parallel methods by SD derives from the
observation that the space H can be decomposed into the sum of smaller
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and simpler subspaces as in (0.5), then the minimization problem (0.4) can
be replaced by a problem similar to (0.2) where H; = H}() N V,. For a
general SD, the minimizer of (0.2) may not be unique, but it has been proved
that several methods converge for (0.2), for example the sequential Gauss-Seidel
method and the parallel Jacobi method, see [12]. In the overlapping DDM case,
the Schwarz alternating method is nothing else but the Gauss-Seidel method.
Applying the Gauss-Seidel and Jacobi methods to some linear and nonlinear
problems, several sequential and parallel overlapping DDM’s can be got, see
[12], [13].

The rest of this paper is organized as follow: the section 0.2 will give an
overview of proximal techniques. In section 0.3, we will present two versions
of additive proximal domain decomposition methods. Finally, we will conclude
with some numerical results and remarks.

0.2 PROXIMAL TECHNIQUES

Let denote the inner product on H by (.,.) and the induced norm by ||.||.
Let T : H3H be a set-valued map (operator) on H, we define its graph by:
Gr(T) = {(z,y) € H x H|w € Tz}, the inverse T-! of T is the operator
defined by: Gr(T~1) = {(=,y) € H x H|(y,z) € Gr(T)}. The operator T is said
to be monotone if (z — ',y — /) > 0 for all (z,y) and (z,y) in Gr(T). T is
said to be maximal monotone if it is monotone and its graph is not properly
contained in the graph of any other monotone operator. Several authors have
extensively studied the theory of maximal monotone operators in Hilbert spaces
and applications, among others Brezis [3], Dolezal [4] and Aubin and Ekeland

2].

Many problems from mathematical programming, complementarity,
mathematical economics and other fields can be formulated in the way of the
fundamental problem of finding an element z € H such that

0eTz (0.6)

For example, if T is the subdifferential operator 8F of F (F # +o0), then Minty
[9] have shown that T is maximal monotone, and the problem of minimizing the
function F is equivalent to that of finding a zero of T, i.e. F(z) = minF(z)
means that 0 € T'z. The problem (0.6) is equivalent to that of finding a fixed
point of the resolvent operator J = (I + AT)~! (to simplify, we denote this
operator by Jy), A > 0, i.e. find z € H such that: z = Jz.

As early as 1962, Minty [10] pointed out that, when the operator T is
maximal monotone, its resolvent (the Moreau-Yosida resolvent) J is single-
valued on IR™ and non-expansive, This result suggests that a solution to the
inclusion 0 € T'(z) may be iteratively approximated using the classical iteration
2(k+1) = J, z(*), One could modify this scheme by iteratively varying the scalar A
and by choosing the iterator z(*+1) to be an approximate solution to the equation
(I +AT)z = 29, ie., 2(*+1) & J,z(¥). The proximal point algorithm precisely
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applies these ideas. The algorithm, starting from any point 2(9) generates a
sequence {z(*)} in H as follows:

*+) = g, 2(F) (0.7

where {\} is some sequence of positive real numbers. A wide variety of global
convergence results for the proximal point algorithm can be found in literature.
As early as 1970 and 1972, Martinet [7] [8] proved the convergence of the exact
proximal point algorithm for certain special cases of the operator T' with fixed
Ar = A. The first theorem on the convergence of the general proximal point
algorithm was proved by Rockafellar in 1976 [11]. His theorem not only insures
the global convergence under a mild approximating rule, but also describes the
global behavior if the inclusion 0 € T'(z) has no solution. The convergence
rate of the proximal point algorithm depends on the properties of the operator
T, the choice of the sequence {);}, and the accuracy of the approximation
6+ & gy, 2 (),

Consider the general form of the convex optimization problem (0.4). One method
to solve (0.4) is to regularize the objective function by using the proximal
regularization, already introduced in this document. Given a real positive

parameter A, we recall that a proximal approximation (regularization) of F
is defined by:

Fi(=) = inf{F (u) + 5 lu — |} (08)

This function is convex and differentiable and when minimized possesses the
same set of minimizers and the same optimal value as problem (0.4). When we
consider the right part of (0.8) and seek its optimality condition, we have

0€0F(u") + (1/A)(u* —2z) & 0€ASF(u*) + (u* —z)
& z€(I+)F)(u*)
& u=(I+X0F)"z)

This is the motivation of the terminology ”proximal regularization”. In such
case T' = OF and the proximal point iteration (0.7) is equivalent to:

2®+D) = Argmin{F(z) + (1/2M) ||z — =®)|?} (0.9)

!f the function F is separable and consequently the variables (z:)2, are
mdependent;”the space H can be expressed as a product space, i.e. H = Iﬁ'lo H;
and T = H,-___OT.-, where T; is a maximal monotone operator on H;, then we
?ave I -l-z\.T)‘1 = JTiZo( + AT:)~1. This property is fundamental when we are
mtert_wted in a parallel implementation of a proximal decomposition algorithm.
In this case, observe that we can substitute the proximal step (0.9) by m +1

elementary proximal steps that can be executed simultaneously each on its own
Drocessor.
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0.3 ADDITIVE PROXIMAL ALGORITHMS

In the case where the function F is not supposed to be separable but
the variables are independent, Martinet [7] proposed the following sequential
algorithm: at iteration k, we solve sequentially for § =0, ...,m

j—-1 m
. 1
x;f+1 = argzx'xél}}.{F(Z it 4 z; + Z z¥) + ﬁ“"’j - 3’,’;“2} (0.10)
i€H; - =S i=j+1

Martinet [7] has established the convergence of this regularized relaxation
method when F has continuous partial derivatives. But in our application
we don’t assume the separability of the function nor the independence of the
variables, i.e, the subspaces H;, ¢ = 0,...,m are not orthogonal to each other.
In such case, Tai {12] proposed a parallel Jacobi-like iteration and established
its convergence when F has Lipschitz continuous and coercive derivative. In
this paper, we refer to this algorithm by Jacobi-Schwarz. This Jacobi-Schwarz
is given by:
Do in parallel for j = 0, ...,m:

Step 0: Choose uj € Hj; and ;j > 0, such that 35, 05 < 1.

Step 1: it = argming e, (F (X150 o + v+ Ty, wh)} (0.11)

Step 2: uft = ok o (ubtY? o) (0.12)

In our approach, we have no assumptions about the smoothness of the objective,
we overcome this thanks to the proximal regularization of the functions to be
minimized in the right side of (0.11).

0.3.1  Parallel Prozimal-Jacobi Algorithm (PJ)
Do in parallel for j =0, ...,m:

Step 0: Choose u) € Hj and aj, such that ), a; < 1.
Step 1: i = argmingen AF(XI0g wf +uj + X0t 41 w)
+axllu; — uf|’} (0.13)
Step 2: uit = uf + aj(uf M — ub) (0.14)
The minimizer of (0.2) may not be unique, therefore in the convergence analysis

of our algorithm, we will only prove that u™*! = 3°i*  u?*! converges to the

minimizer of (0.2)

Before giving some convergence results, we recall some definitions in convex
analysis.
Theorem 1 Assume that F is coercive, convex lower semi-continuous on H
and 30;a; < 1, 0 < a; < 1. Then the sequence {u® = Y-, ul}n has the
convergence property.
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Proof: Let us begin by proving the convergence of the sequence {F(u")}s,
Fu™) = F(Zlou)
F(u + Sy e 27 — up))
F(Tiooi(u® +u; 7% — uf) + (1 - T2 ai)u”)

< Tl Pt +ul T —up) 4 (1= TR, 00) F(u™)
< TP ai(F(m) — il — uf ) + (1 - TR ) F(u®)
1 1/2
F™) < F(u") — 52 3 ailluf ~ /7)1 (0.15)
1=0

Therefore, we proved that the sequence {F(u")}n is a decreasing sequence
bounded below by F(u), u is the minimizer of (0.2). So {F(u")}, is a convergent
sequence. From the last inequality (0.15), we can easily deduce that the sequence
{u”t! — u"} vanishes as n — co. F is coercive, so the sequences {u"} and
{u”*1/2} have a limit point u™. If we consider the optimality condition of
the minimization problem in the right side of (0.13), it can be seen that
it = 9Fp () = (up — i T?)/A, where FP(n) = F(u" — u} +w).
And From (0.15), we can also deduce that for each i = 0,...,m, y;'“/ ? vanishes
as n — 0o. Finally, the limit point of 4™ is a minimizer of the problem (0.2).

Remark 1 When we assume that the function F is differentiable and its
gradient is uniformly continuous, the proof of convergence of the PJ algorithm
is similar to that of Jacobi-Schwarz algorithm, proposed by X.-C. Tai in [12].

0.8.2 Prozimal Schwarz Algorithm (PS)

The basic iteration of the algorithm considered in this section is similar to
that multiplicative one proposed by Martinet [7], as described in (0.10). The
difference is that our algorithm is additive and the separability of the problem
is not necessary for us, in other words, the subdomains may overlap. This parallel
Proximal-Schwarz Algorithm is described bellow:

Do in parallel for j = 0, ..., m:

Step 0: Choose uj € Hj.
Step 1: u;f+1/2 = arg ming ez, {F (T2 ub + u; + Yy uh)} (0.16)

The convergence of this algorithm is proven without using any assumption about
the smoothness of the objective function.

0.4 NUMERICAL RESULTS AND CONCLUSIONS

We have implemented these algorithms for a homogeneous Dirichlet problem
(0.3) on a 2D domain decomposed into two overlapped subdomains, i.e., two
subspaces. We take a3 = a3 = 0.45 and for each value of A, we count the number
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of iterations until [|u™ — @]| < 10~2 (% is the exact solution). The obtained
numerical results show that the parameter A influences the rate of convergence
of the Proximal-Jacobi (PJ) and Proximal-Schwarz (PS) algorithms. Figure 0.1
shows the behavior of these algorithms as well as our reference algorithm Jacobi-
Schwarz (JS). We notice that, for our example, the algorithm PS is more efficient
for a good choice of .

@ 1200 +
2 —&—— Prox.-Jacobi
& 1000 4+
§ b= Prox.-Schwarz
*
800 + Jacobi-Schwarz
600 +
400 +
200 +
0 } 4 $ ¥ i A
0.00 5.00 10.00 15.00 20.00 25.00

Figure 0.1 Behavior of the proposed algorithms in function of A

To sum up, in this paper we have proposed some new methods that are useful
for both linear and nonlinear elliptic problems. The numerical results show that
for certain values of the parameter A, the proximal regularization is a good way
to accelerate the Jacobi-like domain decomposition methods. The corresponding
theoretical results and a more detailed proof of theorem 1 and some applications
to nonlinear elliptic problems will be submitted elsewhere.
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