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1 Introduction

Parallel computers and multiprocessor supercomputers are becoming more readily
available; therefore highly parallel algorithms for solving practical complex problems
are of great interest. Domain decomposition techniques [1], traced to Schwarz alter-
nating procedure, are often used in parallel environments and genetic algorithms (GAs)
are reported to be highly parallel [2]. The application of GAs to domain decomposition
problems can be expected to have high parallelism. This paper explores GAs for solving
2-D aerodynamic problems through Schwarz’s domain splitting with overlapping in
order to develop a new kind of domain decomposition approach with high parallelism.

In the present method, GAs are the key techniques through the definition of a fitness
function based on solutions on overlapping subdomains. The Schwarz alternating
Sequences are then guided by genetic algorithms. Binary codings for multiparameters
and small population size are used in genetic iterations. The method presented is
tested for 2-D transonic flows in a nozzle. The numerical results show that the method
presented successfully finds the near optimum solutions within the finite genetic

generations.
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2 Description of the Problem

The aerodynamic test problem we treat here is the flows in a nozzle(see Fig. 2.1)
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which is modeled by
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Here @ is a flow potential, n denotes the unit outward normal vector and a, the speed
of sound given by
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where ~y is the ratio of specific heats and M, represents the reference Mach number
at infinity.

As shown in Fig. 2.1, we decompose the computational domain Q into two
subdomains ©; and s with overlap ;5; the interfaces are denoted by 7, and ~s.
We shall take values

gg on v and go on Y

as extra boundary conditions in order to solve (2.1) in each subdomain. Using domain
decomposition techniques, the problem can be reduced to minimizing the following
function:
1
I(g1,92) = g 18— @, 112

where ®; and ®; are the solutions in the overlapping subdomain ;5.
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3 Algorithm

In this section, we present an implementation of genetic algorithms for the domain
decomposition problem described above.

Genetic algorithms (GAs) [2] are search algorithms which are different from the
conventional search procedures encountered in engineering optimization. The core
structure of the algorithm is based upon the principle of natural selection and natural
genetics. For the function being optimized, the variables are rewritten in a code to form
a structured string that the GAs can operate directly on. For the problem described
above, binary codings for multiparameters are used, and we only code gy, which can
be given by

g1, = 1, - -n (n parameters );

each gy; is coded in I; bits, thus the length of the strings

n
L—_—Zl,~.
i

Let us consider a population size 25 (i.e. 25 strings). GAs decode each string to
return the values of g;;. With the g;; known, we can compute the solutions in the
domain 2, namely ®;. Like Schwarz’s alternative method, we take g» based on ®,,
thus the solution, &9, in the domain Q5 can be calculated. Now, we send both values
in the overlapping region to the cost function:

1
J(g1) = 5 | @ — @ 7.

Thus, each string has a cost value. A new generation of strings can be produced by
performing GA operation [2], such as reproduction, crossover and mutation. By the
principle of the survival of the fittest, strings with better cost values will be selected
and structures containing the desired characteristics will survive while others die off
as successive generations are produced. This process continues until convergence is
achieved.

4 Numerical Results and Analysis

The approach presented has been tested for the domain decomposition problem
described in the section 2. Fig. 4.1 shows the mesh used to solve the test problem
and the overlap 15 whose interface v, is located just by the throat. .

The interface v, has 6 grid points (i.e. 6 parameters). During the GA iteratlf)r‘l, the
length of the string, 30, is used with 5 bits for each parameter. The probability of
crossover Pc = 0.85 and the probability of mutation Pm = 0.015 are not carefully
selected but are fixed for the flow test cases.

As mentioned above, each calculation of J{g1) requires the solution of the full
potential flow equation in each subdomain, which results in a computing cost which
is directly proportional to the number of CFD evaluation. Thus a small population
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Fig. 4. 1 grid of the nozzle

size is used. The presented method begins by randomly generating a population of 25
strings. We keep in mind that each string represents one possible solution g; to the
problem. But the values on the interface +; are very sensitive for the transonic case
due to the limitation of the sonic throat. If g; is given beyond this physical limitation,
the CFD solver [3] will fail to converge. This is why traditional Schwarz alternative
method may fail. Using GAs the individuals may have the same problem, but with
the genetics population, the information before divergence can be still used.

Fig. 4. 2

‘With the boundary conditions, gi» = —1.8 and g,.; = 1.8, we have tested different
flow cases. Here one typical example for the transonic case with Mo, = 0.70 is
presented. The corresponding isomach lines for each subdomain are also presented
in Fig. 4.2. Fig. 4.3 shows the computed fitness function J(g;) for all the examined g;.
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Fig. 4. 3 Isomach lines

It can be noted that the method presented can realize near optimal solutions within
the finite genetic generations.

REFERENCES

[1] Goldberg D. E.(1989) Genetic Algorithms in Search, Optimization, and
Machine Learning. Addison-Wesley, Reading, MA.

[2] Dinh Q. V., Glowinski R., Periaux J. and Terrasson G.(1988) On the
Coupling of Viscous and Inviscid Models for Incompressible Fluid Flows
via Domain Decomposition. First International Symposium on Domain
Decomposition Methods for PDE, SIAM.

[3] Chen H. Q. and Huang M. K (1992) An AF3 Algorithm for the Calculation
of Transonic Nonconservative Full Potential Flow over Wings or Wing-Body
Combinations. Chinese J. of Aero., 5(3).





