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1 Introduction

Multilevel methods decompose the solution space in a nested sequence of subspaces.
These subspaces are then used to construct a multigrid or multilevel preconditioned
conjugate gradient method. Thus the multilevel structure is the basis for the efficient
solution of a partial differential equation (PDE). In this setting, the solution is defined
in the topmost space and the multilevel structure is just used to accelerate some
iterative solution method.

Besides this algebraic perspective, the multilevel structure may be also used to
improve the accuracy of the discretization itself. Under certain conditions, the nested
mesh and space structure can be exploited by various eztrapolation schemes.

Extrapolation results for finite difference methods can be found in [MS83] and for
finite elements in [BLR86]. All explicit extrapolation techniques rely on the existence
of global error expansions for the approximate solutions, typically of the form

k
Up — U= Z h%e; + Rpyq, (1)

i=1
where u;, and u are the numerical and the true solution of the differential equation,
e; are functions independent of h, and Ryy; is a remainder term. The parameter h
denotes the mesh width and can be interpreted as identifying a single space V}, in the
nested multilevel structure. Once an expansion of the form (1) has been proven to
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exist, and when the exponent oy of the leading term has been identified, then a linear
combination of u; and usp of the form

9 1
T 1" e 1

Uk

2h

will lead to an approximation where the dominating error term is eliminated. Using
this scheme recursively, leads to the well-known Richardson extrapolation table.

Extrapolation is only computationally feasible, when the coefficients «; are known,
and when they form a quickly growing sequence. If the oy do not grow quickly, so
that the expansion has many terms of almost equal order, extrapolation will be less
attractive, since many linear combinations are needed before the approximation order
is significantly increased.

Unfortunately, these situations are typical in many practical PDE problems when
reentrant corners, interfaces with jumps in the coefficients or rough data may lead
to singularities, each of which may create its own error contributions to the error
expansion with a new set of exponents «;.

In the case of reentrant corner singularities, the «o; are still known and a local
extrapolation technique has been proposed in [BR8S8], based on meshes refined locally
according to the interior angles.

In this paper we will discuss another variant of extrapolation, where the Richardson
principle is applied indirectly. Such #mplicit extrapolation methods have been
introduced in [JR94, Riid91a]. They are closely related to the so-called m-extrapolation
in multigrid methods, see e.g. [Hac85]Chapter 14.1.3.

Implicit extrapolation is based on a local element-by-element analysis of numerical
quadrature and differentiation rules. Thus they primarily depend on the smoothness
of the shape functions rather than the global regularity of the solution. The regularity
of the solution is of course required to justify the use of high order (polynomial)
approximations in general. Implicit extrapolation has the advantage that it is formally
not applied to the solution itself, but only to the finite element functions approximating
the solution. Thus the specific analysis is independent of the solution properties.
Whether high order finite elements are suitable to approximate a given solution can be
decided independently. Furthermore, implicit extrapolation is suitable for nonuniform
grids as they may occur in a local refinement context.

Using extrapolation in a multilevel context is especially attractive, when the
extrapolation to obtain higher order discretizations is efficiently integrated with a
fast multilevel solver. For integrating Richardson extrapolation with a full multigrid
method and a comparison with multigrid 7-extrapolation, see e.g. Lin and Schiiller
[SL85]. The implicit extrapolation which is the main topic of this paper is most
efficiently implemented by the multigrid r-extrapolation algorithm. Due to the space
limitations in this paper we refer for all algorithmic details to [JR94, Riid91a). We
remark only that implicit extrapolation can be implemented by a trivial change of a
conventional (FAS) multigrid method which consists of only a multiplication by an
additional extrapolation factor in the fine-to-coarse transfer. Thus integrating implicit
extrapolation into an existing multilevel algorithm is easy, and the basic solver remains

untouched, since the higher order accuracy is obtained by a defect correction-like
iteration.
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2 The implicit extrapolation method

For exposition, we consider the simplest case of an elliptic PDE in one dimension

=/ uw0)=ul)=0. (2)
We will use the equivalent formulation as a minimization problem
1
min  E(u), where E(u)= / (u'(2))? — 2u(z) f(z) dz, (3)
uEHé (0.1) 0

where H}(0,1) denotes the the usual Sobolev space of order 1 enforcing homogeneous
Dirichlet boundary conditions. Next, we introduce the mesh 0 = z¢p < 21 < ... <
%, = 1, and discretize (3) directly, by representing the continuous function u by the
vector up, = (ul,...,uP)T. With the mesh widths h; = z;4; — 2; and the midpoints
Tip1/2 = 1/2(xi41 + ), we may replace

u(x; — u{x;
“'(331+1/2)“ —“——““—( H—l)h (1)

and the integration by the midpoint sum

1 n—1
/0 F() dom S hif(@iga)0)
7=0

for the numerical approximation to (u/(z))? and the trapezoidal sum

[ lh
/ F@)de s Y (i) + ()

—‘0

for approximating the integral over u(z)f(z). These approximations combined, lead

to
2 ; - a7 .
E(u) = Ep(up) = E :h [ <uz+1 - ) + fz+1u1+21 +fzuzJ .

The corresponding normal equations are

Ug = 0
«—m+1+’di+Ui—ui—1+hi+1+hif, = 0 fori=1,...,N—1
hiy1 hi 2 ‘ ’

uy = 0

Thus we have recovered the discretization by second order finite differences, or,
equivalently, the discretization by piecewise linear finite elements with Jumped mass

matrix.
The basic reason for deriving the discrete system in this form is the existence of

asymptotic error expansions for

E(u) — Ep(u) = e2h® + ...+ eaxh®™ + Ropyy (4)
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when u is sufficiently smooth. This result holds even for a nonuniform basic
discretization g, ..., %y, if only the refined grids are constructed by recursively
inserting the interval midpoints. This result is proved in [Lyn68]. Based on the
expansion (4) we may now consider extrapolated functionals of the form

_ 4 1 = 16 - 1 -
Ey(uy) = gEh (up) — gEzh(uh.): Ep(up) = EEA(U})) - EEQh(uh): etc.  (5)

Here we interpret u; simply as a vector of values, and note that Fop(uy) only uses
every second value in uy,.

Obviously, each of the extrapolated functionals defines a new system of normal
equations for uj. In section 3 we will give conditions, when the higher order
representation of the functional results in an improved accuracy for uy,. Before we
continue this argument, we mention that results analogous to (4) hold in two space
dimensions, as proved in [Riid93] for the case of triangular meshes. Of course this is
a crucial result, since the main interest here is in methods which generalize to higher
space dimensions. In [JR94] it is furthermore shown that the implicit extrapolation
method is equivalent to using higher order finite elements in a special case.

3 Stability of implicit extrapolation

In the above section we have introduced the #mplicit extrapolation principle for
deriving higher order difference discretizations for elliptic PDE. In this section, we
will interpret w;, as a finite element approximation with lowest oder, that is piecewise
linear finite elements. By the extrapolation, as in (5), we construct higher order
representations of the integrals. These extrapolated quadrature rules are defined for
the continued refinement of a basic mesh xg,xq,...,x, by recursively inserting the
interval midpoints. If the basic mesh is associated with the space of piecewise linear
finite element functions V},, it would seem natural to identify each of the refined meshes
with the corresponding (hierarchical) finite element spaces V;, C V, 2 C Ve & of
piecewise linear functions.

However, since the basic integration/differentiation rules are already correct in all
these spaces, their approximation properties cannot be improved by extrapolation. If
there is a positive effect of the implicit extrapolation, it cannot be directly understood
within the /i-refinement space structure.

Therefore, we consider a p-refinement where the basic space of piecewise linear
approximations V}, is enlarged by piecewise polynomials of increasing order. Thus the
first refinement from space Vj, to V},/; with a first step of extrapolation corresponds to
adding quadratic functions in each interval (i, Z;i+1). The next step to V,, /4 introduces
two additional degrees of freedom in each element and this corresponds to adding cubic
and 4th order basis functions. In the next level ¥V, /s another four degrees of freedom
are added and thus all polynomials up to degree 8.

At the same time as we add p-refinement, the extrapolation according to 5 increases
the aFcuracy of the integration. Unfortunately, this increase of ac(’ura(‘x; does not keep
up qui;h the rapid growth of the spaces. Only in the first step, when (iua,drati(‘ shape
functions are added, the extrapolation provides sufficiently accurate integration rules.
In the second step of extrapolation, only the functions up to degree 3 are integrated
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exactly However in this step cubic and 4th order functions are added to the solution
space. Thus there is a mismatch between the functions in the finite element space and
the accuracy of the extrapolated quadrature rules.

In conventional finite element analysis, the need for numerical quadrature to
compute the stiffness matrix (and right hand side) is rarely made explicit. The finite
element space is basic, and the use of another space (say of nodal values) for numerical
quadrature is usually not explicit in the basic analysis. Here, in the context of implicit
extrapolation, the converse is true. We directly work in the space used for quadrature
and our interpretation of this as a p-version finite element space is just an artifact.

Generally speaking, we are faced with the following situation.

e The continued refinement has produced a large space V which we identify
with a p-refinement of our basic discretization. The associated finite element
problem is denoted by

ineifol E(u), where E(u) = a(u,u) — 2(f,u). (6)

e In the space V, however, we cannot assume that we represent the functionals
correctly. Our extrapolation procedure falls behind in accuracy, so what we
really solve is not (6) but

%nel{l E(@), where E(@) = a4, ) — 2(f, @) (7

¢ Though we cannot say, how accurate E is with respect to E in the full space
V, we have constructed the method such, that V has a subspace W, where
both functionals agree well with each other, say

|E(w) — E(w)| < el|w||? for all w € W. (8)
In W we consider the equation defined by the original functional

Jnin E(w) 9)

The best we can hope for in this situation is that our computed solution & of problem
(7) is close to the solution w of problem (9). This is shown in the following theorem.

Theorem 3.1 (Stability of implicit extrapolation) LetV be a Hilbert space unth
norm || - || and bilinear forms a(-,-) and a(-,-), f € V* with positive constants c1,cz

such that
erloll? < alu, w) < eoffo]]?.

Let u, @, and w be defined by (6), (7), and (9), respectively. Assume that (8) holds

and that
a(v,v) = a(v,v) for allv e V. (10)

Then there exists ¢ > 0 such that

o — @l < e(Vellw]] + [lw —ul}).
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Proof.

a(w —t,w — 4) = a(w,w — @) — a(d,w — i)

a(w,w — @) — alu,w — @)

i

da(w,w— 1) — a(w,w —4) + a(w — u,w — &)

(@—a)w,w—14) +a(w—u,w—1)

< Vi@-a)(w,w) (@-a)(w—aw—a) + Valw - u,w—u) a(w—4,w — @)
< Vi —a)(w,w) alw —a,w — @) + vValw — v,w —u) a(w — 4, w — @).

Therefore

Va(w — d,w —a) < /(@ — a)(w,w) + Valw — u,w — u).
and thus there exists ¢ > 0 with
llw —all < e(vellw]| + [[w — ulf).

O

This stability theorem requires condition (10), which states that we must not
underestimate the true energy FE(u) in our numerical analogue E(u). In many
practical situations, this condition is violated as soon as we attempt a second step of
extrapolation Thus the potential increase in accuracy is not reflected in the solution.

A computational remedy has been suggested in [Riid91b]. Obviously it is sufficient
so solve (7) subject to the constraint & € W. If such a constraint is used to make V'
coincide with W, the instability cannot occur.

However, condition (10) indicates that we need not strictly impose i € W, but it
suffices to correct a possible underestimate of the energy of solution components which
do not lie in W. Since the orthogonal complement of W in V consists of all polynomials
of degree larger than some ko and smaller than ki, it is simple to construct such a
correction. Thus (7) becomes modified to

I[Lnei‘r} E(a) + pD(), (11)

where p is a sufficiently large real parameter and D(@) is a quadratic form which
vanishes on all (piecewise) polynomials of degree < ko and is positive for all (piecewise)
polynomials of degree > kg and < ky. Thus the accuracy condition (8) is maintained,
and clearly, for some p large enough, the stability condition (10) will be satisfied,
too. Consequently, an ansatz of the form (11) where E is constructed by implicit
extrapolation may obtain any approximation order, provided that the penalty term D
is chosen appropriately.

D(@) can e.g. be constructed by computing the finite differences estimating the kth
derivatives for kg < k < k; in each element. Thus D(i) is a local operator, effecting

only nodal values within a single element. Computational experiments showing the
effectiveness of this technique are given in [Rd91b)
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4 A numerical experiment for a singular interface problem

The implicit extrapolation technique can be generalized to two and three space
dimensions. We will now present a two-dimensional numerical experiment in a
nontrivial situation. We consider the diffusion equation

V- a(z,y)Vu(z,y) = 0in (0,1)2 (12)
“('Z‘? Z/) - g(f, y) on 8(0’ 1)27 (13)

where the coefficient has jumps across the lines z = 1/2 and y = 1/2. In particular,
we assume

_{ 1 in (0,1/2) x (1/2,1) U (1/2,1) x (0,1/2)
@Y =13 in(0,1/2)7U(1/2,1) :

We choose the boundary data such that the solution has the form
u(@,y) = u(r, $) = B(g)r*/?,

where (r, ¢) are polar coordinates with respect to the point (z,y) = (1/2,1/2), and
where ®(¢) is of the form

d(¢) = sin(2/3¢ + B)
in each of the four quadrants of the domain, with 8 chosen such that the interface

conditions for the normal derivatives are satisfied. The solution is depicted in Figure
1. Since the singularity is of the same type as in the case of an L-shaped domain,
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Figure 1 Solution of problem (12,13) and convergence rates.

we expect poor convergence. It has been shown, that in a point-wise sense and for a
uniform discretization with piecewise linear triangular elements, we can only expect a
convergence rate of O(h*/3) This is reflected in the upper (unbroken) line of Figure 1.

A conventional technique to improve on this is to use local refinement to better
resolve the singularity. An alternative is based on extrapolation, as in [BR8S8] or
[Riid88]. This is the approach we will take, focussing on implicit extrapolation.



106 Stability of Implicit Extrapolation Methods

Thus we solve a system of the form (4), however, we must adapt the extrapolation
parameter to the nonstandard leading term in the expansion. We thus minimize
(24/ 3 _ 1)_1(2(4/ 3 Ep(up) — FEanlug)). The convergence rate for the corresponding
solution is shown in the lower (broken) line of Figure 1.

The error is visualized in Figure 2. The effect of implicit extrapolation is clearly
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Figure 2 Error for standard discretization and implicit extrapolation.

visible. Since we have not refined locally, the poor resolution of the singularity is
not significantly improved. However, with implicit extrapolation, the global spreading
of the error, the so-called pollution effect is fully suppressed. This is also clear form
the convergence graph in Figure 1, where it is shown that implicit extrapolation has
recovered O(h?) convergence away from the singularity.

5 Conclusions

In this paper we have briefly presented the implicit extrapolation method. We have
proved a stability condition and have suggested computational techniques to satisfy
the stability condition in a general setting. A numerical example has shown, how
the method can be used even in the case of singular interface problems. Many more
aspects of the method, in particular its combination with splitting extrapolation (see
[TmSbL90]) and the so-called sparse grid techniques remain to be analyzed in the
future. Some preliminary results are given in [Riid91b]. )
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