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1 Introduction

The multiplicative Schwarz domain decomposition method is a powerful iteration
method for solving elliptic equations and other stationary problems. A systematic
theory has been developed for elliptic finite element problems in the past few years,
see [1, 2, 7, 8, 9. In this paper, we are interested in solving the parabolic convection
diffusion problems. We use time-stepping along characteristic method mentioned by
Douglas, Russell [6], which is powerful especially for convection-dominated equations,
and Galerkin approximation in the space variables. At a fixed time level, the
resulting equation is equivalent to an elliptic problem which depends on a time-step
parameter Af. This suggests that we might apply the multiplicative Schwarz domain
decomposition method, originally proposed for elliptic equations to the parabolic cases
at every time level. The crucial mathematical questions is then to know how the
convergence rate depends on the space mesh and the time step parameters. In the
present paper, we introduce two kinds of domain decomposition algorithm, give the
convergence rate and error estimates which tell us that after iterating only one cycle
at every time-level, the global approximate solutions converge to the exact solution.
Other domain decomposition methods for parabolic problem can be found in 2,
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5, 8]. In [8], Lions has given a kind of Schwarz alternating algorithm in the case
of two subdomains for the heat equation and a convergence result but without an
error estimate. In [5] Dawson, Dupont have given a kind of nonoverlapping domain
decomposition method for parabolic equations, but since they have used explicit
schemes at the intersection points, a stability condition is needed in the convergence
analysis. In [2], Cai has given a kind of additive Schwarz algorithms for parabolic
convection diffusion equations.

The outline of the paper is as following: In the next section, we will introduce two
kinds of multiplicative Schwarz algorithms with time-stepping along characteristic.
In Sect. 3, we will give the convergence rate of this algorithm, we also give L? error
estimates with a fixed number of iterations at every time level, which tell us that when
h, At are sufficiently small, the approximate solution converges after a fixed number
of iterations at every time level. Throughout this paper, ¢ and C, with or without
subscripts, denote generic, strictly positive constants. Their values may be different
at different occurrences, but they are independent of the mesh parameters h and the
time step At, which will be introduced later.

2 Multiplicative Schwarz Algorithms

Without loss of generality, we consider the following model problem in a bounded
polygonal domain QCR?

2
Betb-vu— 3 glade)=f in Q,
4,j=1 (1)
u =0, on 0,
u(z,0) = u%(z), in .

Here b = (b1, b3),b- yu = by 2% Par t+ bz sacandJ = (0,T] denotes the time interval. The
coefficient satisfy a;; = a;; and there ex1sts a positive constant « such that

2
D ailil>lel, VE=(6,6)TER @)

ij=1
The variational formulation of problem (1) is: For ¢ € J, find u(¢) € H} () such that
{ at,v)+a(u v) + (b vu,v) = (f,v), ve HQ), 3)
(u(0),v) = (u°, v)
where

a(u,v) = / Z aij gu g'v “4)

ij=1

Let At denote the time-step, and let t" = nAt and u™ = u(¢*). For any point
T = (21, T2), let

7= { Z = bAt = (z1 — by At, 3 — by At), when z—bAte )
2Y (z — bAt) — X (z — bAL), when z —bAtZN



H. Rui and D. Yang 311

where Y (z) € 99 denotes the point of projection of z, X (z) € 0 denotes the symmetric
point of z, we also let "~ = u(Z, *!). Then

u"——ﬂ,n_l
A o L'y vu+0( At) (6)

where 7 denotes the unit vector in the characteristic direction of the transport term
¢ +b-7u). Then the form (3) can be changed to

u” — ,an-l

— n—1 7n
() + aw,v) = (7, 0) + (57, v), @
where 1 o
n WU Ou o o2
p=— (6t +b-Vu) 0(37'2 At).

We now divide 2 into overlapping subdomains 04,8, - - -, §2,, satisfying Condition(A):

Condition(A): For any z € () there exist an open domain D, and an iy €
{1,2,---,p} such that z € D, and D, N C ;.

Extending the elements in H}({2;) to Q by zero, we give the semi-discreted
multiplicative Schwarz algorithms:

Scheme I: Let U® =0, for n > 1, we find U™ € H}(Q) by three steps:

1) Set Uy = UL

2) Find U2, ,(j =0,1,---,m —1,i = 1,2,---,p) such that

Uy, -
{ (e ) + (U 50) = (F0), v € (D), ®
UJp+z = UJp+z——1a €0\
3) Let U™ = Upp:z € Q. Here m denotes the iteration time at the time-level in

question.

Problem (8) are continuous in the spatial variables; in practical computation we
can use an appropriate numerical method to solve it. Next we shall give a kind of
multiplicative Schwarz algorithm combined with Galerkin finite element method. Let
T}, denote a quasi-uniform triangulation of @ which is aligned with the above domain
decomposition, let A be the mesh parameter. My, C Hj (1) denotes a standard finite
element space such that

. (lu—ell + hllu —oll) < Ollullr1h™*, w € Hy(@) NH™1 Q). (9)

Let T; 5 denote the restriction of T}, to €, let My(Q;) denote the restriction of M,
to ;, and let MP(£;) = M"™(Q;) N H} (). Set the initial approximation W € My

satisfying
IWR —u®l) < Ch7*. (10)

We give the following multiplicative Schwarz algorithm :
Scheme IL: For n > 1 find W} € M}, in three steps:
1). Let W =Wyt
2). Find W2 ,,(j =0,1,---,m—-Li= 1,2,---,p) satisfying
{ (Tt P ) 1 a(Wh,500) = (F%,0), v € M), a1

At
Wei=Wh i1 zeQ\ ;.
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3) Let W*=Wg,,z €
It is clear that the solutions of Scheme I and Scheme II are unique.

3 Convergence Analysis and Error Estimates

First we give two lemmas given Condition (A). We use the notations

A(u,v) = (u,v) + Ata(u,v),Vv € Hi(Q),
{ lulla = (G(U,U))%i . (12)
llulla = (A(u,w))? = (lullf + Atfull2)=.

Lemma 3.1 Suppose. that the domain decomposition satisfies Condition (A). Then
P

for u € HY(Q) there exist a decomposition u = ) u;,w; € H3 () such that
i=1

4
S lwly < (1+ Crab)ull, Ve € H (Q), (13)
=1

where C; denotes a constant independent of At and u.

Lemma 3.2 Under the condition of Lemma 3.1, there exists a constant Cy independent

P
of h, At. For u € My, there exists a decomposition u =Y u;,w; € M} () such that
I=1

r
> lwlli < 1+ Ca(At + b)) |ul. (14)
=1

In order to estimate the convergence rate, we need one of the following stronger but
reasonable conditions, which can be easily satisfied.
Condition (B): The subregion ;{1 < i < p) can be divided into four parts:

Dj = Z Qi) i=12,3, 47 7o =0, 714 =p (15)

73-1<4<r;

Subdomains in Dj are disjoint and {Dy, Dy },{D3, D4}, {D1UD2, D3UD,} are domain
decompositions of D; U Dy, D3 U Dy, 2 respectively, which satisfy Condition (A) for
p=2.

Condition (C): The subregion 2;(1 < i < p) can be divided into k parts:

Di= > Q,i=12..,kro=0r=p (16)

rj-1<ESry

such that: (1) {Qj,7-1 < ¢ < r;} is a domain decompositions of D; satisfying
condition (A) and for rj_1 +1 < 4,1 <7y, U NQ =0, if 1 #£ i — 1,5+ 1; (2)
{D;;1 £ j < k} is a domain decomposition of € satisfying Condition(A) and for
1<4, 1<k YNy =0,ifl#j—1,j+1.
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Remark 1. When Condition (B) holds, the above method can be parallelized by
coloring the subdomains and solving in parallel on disjoint subdomains of the same
color.

For error estimates of Scheme I, defining the operator R; : H}(Q) — H} (%) such
that

A(Riu —u, 'U) =0,Yv e H&(Q,) (17)

Theorem 3.1 Suppose that Condition (B) is satisfied for the domain decomposition.
Then there exists a constant Cs, independent of u, At, such that

(I ~ Rp) -+ (I ~ Ro)(I — Ry)ulla < CsAt ||ulla, Yu € HY(Q). (18)

Theorem 3.2 Suppose that Condition (C) is satisfied for the domain decomposition.
Then there ezists a constant Cy independent of At,u such that

(I = Bp) -+ (I = Ba)(I — Ry)ulla < Calrt |lull 4, Yu € H (). (19)

Let du™ = (u" — u™"1)/At, e® = U™ —u™, and e} = U —u™. Then " = ¢}, and

et .-~ n—1 n .
(ST 0) + alefyyi0) = —(0%0), W0 € HY(), 20)
(€fp4i — €fpri-1) =0, z € (Q—Q).

Theorem 3.3 Suppose that Condition (B) or Condition (C) hold. Then there exists
a constant Cy, independent of At, such that

lle™lla < (1 + CsAt™)|le" |4 + CAHALE + At) (21)

where the constant C is independent of At.

Theorem 3.4 Suppose that the solution of (1) is sufficiently smooth. Suppose also
that Condition (B) or Condition(C) holds for the domain decomposition. For m 2> 1
and the solution of Scheme I, we have

o m
lu™ — U™ < C(At + Dbl g5 sy + Bt%),

where C denotes a generic constant which is independent of At.
For error estimates of Algorithm II, define Ry ; : My — Mj(£;) such that

A(Rpu—u,v) =0, Vve Mp(Q). (22)
Theorem 3.5 Suppose that Condition (B) or condition (C) are satisfied for the

domain decomposition. Then, there ezists a constant Cg, independent of u, h, At, such
that

(T = Rup) -+~ (I — Rna)I — Rop)ulla < Cs(h+ At |lulla, Vue My, (23)
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Define an auxiliary function %@} € M}, such that
a(iy —u”,v) =0,Yv € My, (24)

and let n = ™ — 4}, E™ = W” — 4}, E} = W — 4}, as in (18), (19) and (21). If
Condition (B) or Condition (C) is satisfied, we can prove that

(I = Rup)- - (I - Ru2)(I ~ Rup)|l < C(At+ h)3, (25)

IE™a < (1+ Cr(At+B)™E 4 + CALAL+ T + (At + h) ), (26)
where Cy denotes a constant which satisfies 1 + C2(At + h)™ < 1 +2C7(At + h)™.

Theorem 3.6 Under the assumptions of Theorem 8.4, and for ™ = O(At),there
exists a constant C, independent of h, At, such that for the solution of Scheme I
2
lu® - W"|| < C(At + At”%”Lm(.};[ﬁ(Q)) + AtERMHL 4 (At +h)%). (27)

Here C denote a generic constant independent of At and h.
Remark 2 If by = by = 0, the term At=3h™+1 can be removed and the error estimates
are of optimal order.
Remark 3 Theorem 3.1, Theorem 3.2 and (25) tell us that the convergence rate for
Algorithm I, Algorithm ITis p = CAt3, p=C(At+ h)% respectively. Since we do not
use a coarse mesh triangulation, the constant C depends on the overlapping parts of
subdomains.
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