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1 Introduction

In this paper, we generalize the BPS algorithm [1] to nonconforming element
approximations of the biharmonic equation. We construct a preconditioner for the
Morley element by substructuring on the basis of a space decomposition. The space
decomposition is introduced by partitioning discrete biharmonic functions into low
and high frequency components through intergrid transfer operators between coarse
and fine meshes and a conforming interpolation operator. The method leads to a
preconditioned system with the condition number bounded by C(1+log? H/h) in the
case with interior cross points, and by C in the case without interior cross points,
where H is the subdomain size and h is the mesh size. These techniques are applicable
to other nonconforming plate elements and are well suited to parallel computation.

For conforming element discrete problems of a second order elliptic equation,
Bramble et al [1] and Widlund [7] have obtained certain preconditioners which
are easily inverted in parallel and can reduce the condition number of a discrete
system from O(h~2) to O(1 + log® H/h). The main idea is a decomposition given by
v = v + (v — IIgv), where Iy is the interpolation operator on coarse meshes and
the nodal parameters of v — I gyv vanishes on the coarse mesh nodes, and an extension
theorem. Gu and Hu [3] have obtained a similar result for Wilson nonconforming
element. Zhang [9] has constructed preconditioners for certain conforming plate
elements on the basis of a space decomposition by adding certain vertex spaces.
However, for Morley element, since the finite element spaces are not nested, and the
functions have bad discontinuities, a space decomposition similar to those mentioned
above does not hold.

We introduce a conforming interpolation operator for the Morley element and
related intergrid transfer operators, and then construct a space decomposition to
overcome these difficulties. Brenner [2] has introduced a conforming interpolation
operator Ej, by taking averages of the nodal parameters associated with the function
and its first derivatives among the relevant elements, and taking zero as the nodal
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parameters associated with its second-order derivatives, in order to deal with an
overlapping domain decomposition method. To be suited to a parallel computation
in the substructure preconditioning, we modify Brenner’s approach so that the nodal
parameters of Epv, depend only on those of v, on the boundaries of substructures.
Zhang (9] on the other hand, has defined an interpolation operator for certain
conforming plate elements by setting the nodal parameters for second-order derivatives
to zero. We use it to define the intergrid transfer operators I, from coarse to fine
meshes and Iy from fine to coarse meshes. Then we generalize the BPS algorithms
and Widlund theory of substructure preconditioning to nonconforming plate elements.

2 A Preconditioning Algorithm

Let ) be a bounded polygonal domain in R2. Let J, and Jy be quasi-uniform
triangulations of Q with h and H as mesh parameters respectively. Assume that Jp
can be obtained by refining Jy, so that Jg and J form a two-level triangulations on
Q and the nodes of Jy are those of J,. Let S*(2) be the Morley element space [5] and
let SZ(Q2) be a subspace of S*(Q) with nodal parameters vanishing at the boundary
nodes. The Morley element discrete problem is : Find up, € S2(2) such that

an(un,vn) = (f,v8), Vv € SHQ),

where

ap(u,v) = Z Z /TDauD"‘vdm, (f,v):/fvda:.
Q

Tedn |al=2

Let Ju = {Q%};.;. The vertices of Ju will be labeled by v; (ordered in some
way) and I';; will denote the edge with endpoints v; and vj. SE(;) will denote the
subspace of S§(f2) consisting of functions with nodal parameters vanishing on Q\Q;.
In addition, S*(€;) will be the set of functions which are restrictions, of those in

S8(Q), to Q. In what follows, ¢ and C' (with or without subscript) will denote generic
positive constants which are independent of H,h and €.

We construct our preconditioner B through its corresponding bilinear form B(:,")
defined on S}(Q) x SH(N).

We decompose functions in S2(Q) as follows:

Write w = wp + wy, where wp € SE(Q) @ --- ® SE(Qy) satisfies

af(wp,d) = af(w,8), Vee S& (W), for each k,

where

a’li("v”)= Z Z /Do‘uD"‘vdm.
T

TE€Jn,TC |aj=2

Notice that wp is determined on O, by the nodal parameters of w on Qj and that
aj(wp,$) = 0 for all ¢ € SP(Q).

Thus on each (U, w is decomposed into a function wp whose nodal parameters vanish
on 8y, and a function wy € St (Q4) which satisfies the above homogeneous equations
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and has the same nodal parameters as w at Uy, 09%. We shall refer to such a function
wpy as “discrete af —biharmonic”.

We note that the above decomposition is orthogonal with respect to the inner-
product ap(-,-) and hence, ap(w,w) = ap(wp, wp) + ap(ww, wy).

To define the bilinear form B(-,-), we introduce a linear interpolation operator
E}, and intergrid transfer operators I and Iy. The conforming relative of Morley
element is the Argyris quintic element. Let AR™(Q) and AR¥(Q) be the Argyris
quintic element space associated with Jy and Jp, respectively; see [2].

For an arbitrary vertex p of Jp,, we assign to it one of its adjacent edge midpoints
ep. If p € |JT'y;, we assign to it e, which belongs to (JT'y;. If p € 89, we assign to it
ep which belongs to 8. For v € S}(€2), we define Epv € AR™(Q2) such that

Epv(p) =v(p), V vertiesp
OpEpv(m) = Opv(m), ¥ midpoint m (2.1)
D*Epu(p) =0, |aj=2;

and
O: Epv(p) = O,v(ep) cos B + 2@[_”(@_ gin 3,
® (2.2)
8, Env(p) = Bpv(ep)sin B + w@) =) g

lap
where n = (cos 8, sin 8), s = (— sin 8, cos ) are the unit normal and tangential vector
respectively, and I, is the length of the segment ap (cf. Figure 2.1). We note that
(2.1) is defined as in Brenner [2] but that (2.2) is different.

p
n
4 m
3Y e,
a
Figure 2.1

From the definition of the conforming interpolation operator Ej, we can see that
nodal parameters of Epvp, on UL;; depend only on those of v, on UL';;. This property

is important in our discussion.
The intergrid transfer operator Iy : ARY(Q) — AR®(Q) is defined by (c£.[9])

D Igv(p) = D*v(p), for || <1
D%Igv(p) =0, for ja| =2
B, Iyv(m) = Bpv(m), for all internal midpoints m € Ju,

for v € ARP(Q). The intergrid transfer operator I : AR¥ () — AR"(Q2) is defined
similarly. N . o
Now we construct a preconditioner. From the decomposition of Argyris quintic

element space
ARMQ) = I,Ig ARM(Q) ® ARM (),
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we decompose wy € S*(Q) into
wHg = wg +wy,

where wy € S"(Q) is a discrete af—biharmonic function such that the nodal
parameters of Epwy on 89y are those of IpIgEpwy along each T'y;. Thus wg is
a discrete af —biharmonic function in Q for each k such that the nodal parameters
of Epwg vanish at all nodes of coarse meshes. Let

52(Q) = {vn € SE(Q); nodal parameters of Epvp|r,; = those of InIgEnvalr,;}
for all I';;. Then, we have a space decomposition
Sp () = S5(2) @ (S5 ().
Using this decomposition, we now define the bilinear form B(:,-) as follows

B(w, $) = an(wp, ¢p)

+ Z {(as’u_IEa 63$E>Hééz(l"ij) + (OnWE, anq;E)Hééz(pﬁ)}
T

+ > {(wy (v:) — wy (v5) — Do (v3)(vi — v;))
'y (23)
(#v (v;) — ¢v (v;) — Dy (vi)(vi — v;))H™>

+ (Dwy (v;) — Dy (v;))(Dgy (vi) — Dy (v5))}

+ D Y @alwy = (wy)1)(m)(@algv — (dv)1)(m)),

Teduy m

where and from now on ¥ = Ejv, and (-,-) HM%(r,;) Means Hé({z(f‘ij)-inner product
which is defined by ®

(v, 'w)Hgf(r,.j) = /1‘,-,~ /sz (v(z) ——v('yz))_(u;l(:) —w(y) ds(z)ds(y)
1
+ /I“;,- v(@)u(z) (|:c — 4 + |z _1 'uj|) ds(z),v,w € H(}éz(rij)-

We shall demonstrate how the linear system Bw = g can be solved efficiently.

Given g, the problem of solving Bw = g reduces to finding the functions wp and
wg. The function wp restricted to ), satisfies

af(wp,9) = (9,¢) for all ¢ € SH(y,). (2.4)

Thus it can be obtained by solving in parallel the corresponding biharmonic Dirichlet
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problem (2.4) on each subdomain. With wp known, we are left with the equation

Z {(BS’U_JE, 63&E)H3({2(I‘,-5) + (an'u_’E’ anJ’E)H;éz(pij)}

Iy
+ ) {(wy (v:) — wy (v;) ~ Db (v3)(v; — v;))
i;
(ov (vi) — ¢v (v;) — D (v3)(vi — v;))H ™2 (2.5)

+ (Dwy (v;) ~ Dy (v;))(Ddv (v;) — Dy (v;))}
+ Z > On(wy — (wy)1)(m))(Bn(dv — ($v)1)(m))

TeJg m

= (9,9) — an(wp,9).

(The last equality holds since ap(wp,dy) = 0). Notice that the value of (g,¢) —
an(wp, @) for each ¢ depends only on the nodal parameters of ¢ on all T';;. From the
definition of the interpolation operator Ep, we see that the value of (g, ¢) ~ an{wp, ¢)
for each ¢ depends only on the nodal parameters of ¢ on all I';;. Thus (2.5) gives
rise to a set of equations which can be treated as follows: for each I';;, choose ¢ in a
subspace of S () such that the nodal parameters of ¢ vanish in the all interior mesh
points of every € and on all other T';;. Thus, on this subspace, (2.5) decouples into
independent problems of finding wg € ARE(Ty;), Inwg = 0 given by

(as'lflE, aﬂ§$>Héc/.2(Fij) + <an“_1Ea a"J))Hgéz(l";j)
= (9,9) — an(wp, $), Vo € S§(Q), Ind =0, ¢ € AR§(Ts)

for each I';;. Note that these are local problems with unknowns corresponding to the

nodes on I';; and may be solved in parallel.
Next we solve for Wy on the edges. We consider the subspace {¢; nodal parameters

of g|r,; = those of InTuglr.;,9 € S§(Q)}. Then, (2.5) reduces to

> {(wv (vi) ~ wv (v;) — Dby (v3) (v — v;5))
T
(v (v:) — dv(v;) — Doy (v;)(w; — vi)H -2
+ (Dwy (vi) — Dby (v;))(Dv (v:) — D (v;))} (2.7
+ 3 > (Balwy — (wy)1)(m))(Ba(dv — ($v)1)(m))

TeJyg m

= (g, ) — an(wp, 9).

The nodal parameters of @y at nodes of T' € Jy determine those of wy on all edges
I';j, and hence wy = wg + wy is known on all edges I';;.
The last step consists of determining wg in each O so that

o (wgr, @) = 0 for ¢ € SE(Q)- (2.8)

(2.6)

This problem is similar to (2.4), which can also be solved in parallel on each subdomain.
Hence the solution of Bw = g is determined by w = wp + wy.



114 Substructure Preconditioners for Nonconforming Plate Elements

We summarize the process by outlining the steps for obtaining the solution of

B(w,$) = (g, ¢) for all ¢ € Sp(Q),

and hence for computing the action of B~1.

Algorithm.
1. Find wp by solving biharmonic Dirichlet problems on the subdomains. The solution
of each individual Dirichlet problem on subdomains may be done in parallel.
2. Find @wg on I';; by solving a one-dimensional equation on each I';;; this may be
done in parallel.
3. Find @y on |JT; by solving a coarse mesh equation and then extending it to all
edges I';; by operator I.
4. Find wg by extending the nodal values of wg + wy on UL';; to all subdomains. As
in step 1, the solution may be done in parallel.

3 Estimates of the Condition Number

We have the following theorem.

Theorem. There are positive constants \g, A\ and C such that
XoB(w,w) < ap(w,w) < M Bw,w), Yuw € Sg(Q),

where Ay /Mo < C(1+1log® H/h). If all of the nodes of Qi lie on 09, then A1/ < C.
The proof can be found in {6,8]. It means that the condition number grows at most

like (1+log? H/h) as h tends to zero. Therefore the preconditioned iteration converges

rapidly.

Remark. We can easily get similar results for many other nonconforming plate

elements [4].
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