Implementation of Non-overlapping

Domain Decomposition Methods
on Parallel Computer ADENA

ATSUSHI SUZUKI!

This paper discusses parallel efficiency of non-overlapping Domain Decomposition
methods(DDM) for elliptic problem with the results of the implementation on parallel
computer ADENA, and describes DDM solver for Stokes problem.

1 NON-OVERLAPPING METHOD FOR ELLIPTIC PROBLEM

In the Non-overlapping Domain Decomposition method, appropriate boundary
condition on inner-boundary need to be found to get a solution satisfying original
problem. There are two methods differed in boundary data. One method requires
continuity of Dirichlet data on inner-boundary|GDP84]. Neumann data on the
interface is obtained by preconditioned Conjugate Gradient solver. We call ‘ Neumann
type’ method in this report. The other method requires continuity of Neumann data
on inner-boundary [BW86]. This method is well-known as Schur complement method,

we call ‘Dirichlet type' method.
In the following section we discuss details of two algorithms for the elliptic problem
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in two dimensional space:

—Auy=f in Q
(E){ u=g on ['=00Q ~ (1)

For the simplicity of representation, we discuss the two sub-domains problem. Domain
€ is divided into two sub-domains {Q2;}7_; and 75 is the interface between the two
sub-domains : 12 = 9y N 0.

1.1 Interface Problem with Lagrange Multiplier

Non-overlapping DDM is formulated as minimization problem with constraint. Let
{J;(v;)}2_, be cost function in sub-domain and b({vi,v2},q) be constraint on the
interface, the minimization problem is following:

Find {ul,u2} € V' such that Jl(ul) -+ JQ(Uz) < Jl(vl) + Jz(’l)g) V{’Ul,’ljg} eV, (2)

V= {{vi,v2} € X1 x Xo} | b({v1,v2},¢9) =0 Vg € M}.

By use of Lagrangean : L({v1,vz},q) == J1{v1) + J2(v2) + b({v1, v2}, q), the solution
of this minimization problem is equal to the solution of the saddle point problem :

Find ({u1,u2},p) € (X1 x X2) X M such that
L{u1,u2},q) € LHug,u2},p) < LHEv1,v2},p) Y({v1,v2},9) € (X1 x X3) x M.

1.2 Neumann type

In Neumann type, let X; := {v; € H*(£;) | v; = 0 on 0Q; \ 12} and M := H‘%('ylg),
and cost function and constraint are

1
Ji(v;) == 5/9 Vuinida:—/Q fivide and b({v1,v2},q) == —/ {v1 — ve)gdy.
i i Yi2

The constraint means Dirichlet data on the interface -y;2 is continuous. The dual
problem of equation(2) is a variational problem called ‘interface problem’ which
determine Neumann data on the interface.

Find p€ H™*(mz) suchthat a(p,q) = F(g) Vg€ H¥ () (3)

am@=L(mwm Ap = us (p) — ua(p) ﬂ®=/(w—mM® (4)

-‘A’U»i =0 in Qz —sz = fz in Qi
u; =0 on 0\ V2 w;=g; on % \m2 (5)
Oui __ -1 i—1 Jwy __ .
n; (=1)*"'p on i o =0 on 7y

1.3 Dirichlet type

In Dirichlet type, we consider dualization of the Dirichlet problem and divergence space
to deal with Dirichlet data in weak sense. let X; := {v; € H(div ; @;) [ V-v; + f; =0}
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and M := H% (712), cost function and constraint are

Ji(v;) = %/jvi]2dm—/ 9ivi - nydy and b({vy,v2},q) i= —/(vi -y + g - N2 )gdey.
Q; 92\ 12 Y12

The constraint means Neumann data is continuous on <;3. The dual problem of

equation(2) is a variational problem called ‘interface problem’ which determine

Dirichlet data on the interface. Usual formulation is used to describe Drichilet problem

in sub-domain.

Find p € H? (y1) such that a(p,q) = F(q) Vg€ H™¥(y12) (6)
_ _ Oui(p) | Bua(p) _ / (% Ows )
a(p,q) = /7 1z(Ap)qal'y Ap=—7 =+, FT@= o Nom T a1
(7
—Au; =0 in £ ~Aw;=f; in
u; =0 on 80\ m2 w;=g; on O\ Y2 (8)
Ui =p on vz w; =0 on 2

Calculation of the gap of Neumann data on 72 is done by Gauss-Green’s formula

exactly,
8%1 a’lLZ ) 2 / ~
= 2 ) gdy = Vu; - Vidz,
/le (8’)’1,1 a’nz Bt ; Qi E

where § stands for extension of function g on 72, in descrete case FEM basis on vi9.
This L?(712) inner product is replaced by H'(;2) inner product as the preconditioner
for Conjugate Gradient solver of equation(6).

1.4 Homogeneous Neumann Boundary Problem

The Poisson equation with homogeneous Neumann boundary condition must satisfy

the compatibility condition, and its solution is unique except ambiguity of a constant.
—Au=f mn

i ! dz =0 9

Find u € H'(2) \ R { w' ot /Qfm (9)

Neumann type DDM can solve the problem with balancing procedure to satisfy

compatibility condition in each sub-domain, and to adjust the constant over sub-

domains. This procedure is described as following. N
Initial data of search vector p® of CG solver must satisfy the compatibility condition:

Al = §; in Q;

g%?-“ =0 on 8\ 1o fida+(~1)61 p’dy = 0. (10)
0 1 . Q;
%‘ﬁi- = (—1)"1p" on T2 ™

On each step of CG iteration, sub-problems with Neumann boundary data p™ which
must satisfy the compatibility condition are solved.
Ayl =0 in
oui on I / pt=0. (11)
Y12
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Because each solution u? has ambiguity of a constant, the constant {c;}7_; in each
sub-domain should be determined for next step of CG iteration,

(uf — ) — (uf — G)dy=0. (12)
Y12

If the domain is decomposed into many sub-domains, the matrix with one
dimensional kernel have to be solved to determine the counstants of sub-domains.
Because of the singularity of this matrix, the direct solver is efficient than iterative
solvers. This solver must be processed in a single processor to avoid the redundant
cost for communication.

2 MATRIX REPRESENTATION OF INTERFACE PROBLEM

In this section, we give a matrix representation of ‘interface problem’. From finite
element base functions ¢;, matrices A, B are obtained : (A)i; = alp;, ¢;), (B)y =

f’Y12 w;pidy. Suppose that ug-i) denotes the values on inner nodes and -ug) on the
interface yjo. Also matrix A® is decomposed into four parts.

2.1 Neumann type
—Au; =0 in € (3) (%) (2)
Ug = 0 on agi\’ylz ( J?.I)IT A(I]])B ) ( u{i) > = ( 1 ?—IB‘ ).
fu = (<1 p on mo LA AN T

By eliminating data in sub-domain u_(,i) matrix representation of ‘interface problem’
operator is obtained:

1 0T -1 _ T -1 B ,
An= (A - AT AD T AR+ i) - 4R A AR ) B (o)
. ~-1 -1
We use main part of the operator A4, (Agj)g + Agj)g )B as a preconditioner for
CG solver. We use a direct solver (modified Cholesky decomposition solver) for elliptic

problem in sub-domain. The reason is that direct solver is faster than iterative solver
in small size problem.

2.2 Dirichlet type
—Au; =0 in X . )
¢ ! (@) 0] (8
;=0 on 9\ yi2 Ary B u; [0
U; =P on “yia BB Up

Neumann data on the the interface are calculated by data -u.y) exactly. A matrix
representation of ‘interface problem’ operator is obtained :

- 1 T @t p T @1 ¢
Av= 57 (a5 - A A7)+ B, - 4B7AY T AB). ao
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The matrix representation of discrete ‘interface problem’ is equivalent to Schur
complement matrix except for matrix B~!. As in Neumann type, we use B _1(A§311)3 ~+
Agj)g,) as a preconditioner for CG solver.

These preconditioner are easily extended to multi-sub-domains problems. In
Neumann type method, pieces of the interface are independent each other(shown in
left of figure 1), the residual vector of ‘interface problem’ are calculated in parallel over
all pieces of the interface. While, in Dirichlet type method, because of cross points, the
interface has complicated structure(shown in right of figure 1). Therefore the residual
vector given in H(y) inner product are calculated using the iterative method which
requires cooperation of all processors for pieces of the interface.

Figure 1 The structure of inner-boundary

o o —0
o— o o o- ) j

(o] o
Neumann boundary Type Dirichlet boundary type

3 IMPLEMENTATION ON PARALLEL COMPUTER

8.1 ADENA massively parallel computer

The ADENA is distributed memory system, which has 256 CPUs with 2M bytes local
memory. By using ‘Alternating Data Edition’ network, all processors can communicate
with two times operations of data-transfer. Moreover it is very easy to gather
information of all processors to one processor, and also, to broadcast data in one
processor to other all processors. This ability is powerful for inner product calculation,
over all edges of sub-domains, which is required in the procedure of updating boundary
data on interface in the DDM.

8.2 Results of elliptic problem on ADENA

The test problem is u — Au = fin [0,1] x [0,1], and the exact solution is u =
sin(0.57(z + 0.1)) sin(0.57(y -+ 0.1)). Square region contains 480 x 480 nodes. Table 1
shows the results in two type algorithms. Time for data transfer is less than 0.7% of
total time of solver. Dirichlet type solver is faster than Neumann type solver. However
in Dirichlet type, as described in section2.2, due to the cross point of boundary
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interface, time for updating boundary data is about 10% at 256 processors, against
1.7% in Neumann type.

Table 1 Results of elliptic problem on ADENA (480 x 480 nodes, ¢ = 107%)

Neumann type Dirichlet type

# processors 100 144 225 256 100 144 225 256
7 iteration 303 353 442 475 165 178 197 203
total time 395.40 277.72 189.57 171.71 19914 129.28 78.69 68.50
parallel efficiency % 100.0 98.8 92.6 89.9 100.0 106.9 1124 1135
boundary data update 2.83 2.60 2,48 2.92 7.11 6.60 7.02 6.96
data transfer 0.77 0.85 1.08 1.08 0.35 0.36 0.41 0.39

time (sec.)

Table 2 shows the results of homogeneous Neumann boundary problem with fixed
number of CPU and various size of problem. As viewed in section 1.4, balancing
procedure is the bottle neck of the algorthim. From this result, we conclude that the
algorithm is efficient if only the condition is satisfied : the number of sub-domain is
less than the number of nodes in sub-domain.

Table 2 Homogeneous Neumann boundary problem on ADENA
(256CPUs, £ = 1072°%)

problem size 64 x64 96 x96 128 %128 160 x 160 192 x 192 224 x 224 256 x 256

total time 5.269 6.553 7.842 9.174 10.868 12.879 15.628
direct solver 0.174 0.440 0.903 1.615 2.672 4.121 6.135
balancing 4,850 5.826 6.604 7.184 7.777 8.293 8.963

time (sec.)

3.3 Results on vector parallel computer VPP500

The Fujitsu VPP500 is vector parallel system which has vector processors with cross-
bar network. Vector parallel machine can simulate massively parallel machine by
replacing parallel loop over sub-domains with vector loop. However, to use vector
parallel machine effectively, vector loop should be long enough. The results of Dirichlet
type of elliptic problem is shown in table 3. From this results, we need more fast

convergence of ‘interface problem’ and low-cost algorithm for calculation of norms on
the interface .



A, Suzuki 281

Table 3 Results of elliptic problem with Dirichlet type DDM on VPP500
(480 x 480 nodes, ¢ = 107'°)

# sub-domains 16 x16 20x20 30x30 40x40 60x60 80x80
# iterations 223 246 296 337 368 412
1 CPU total time 6.433 6.123 6.233 7.628 11.963 20.140
direct solver 5.355 4.660 3.665 3.318 3.428 3.743

interface 0.798 1.131 2.102 3.699 7.682 15.224

2 CPUs total time 5.289 4.580 4.516 5.435 7.773 12.758
direct solver 3.934 2.906 2.088 1.806 1.585 1.936

interface 1.139 1.424 2.099 3.214 5.648 10,104

4 CPUs total time 4.477 3.986 — 4.062 5.504 8.424
direct solver 3.396 2.372 — 1.059 0.882 0.926

interface 1.211 1.430 —_ 2.717 4.266 7.049

time (sec.)

4 DOMAIN DECOMPOSITION SOLVER FOR STOKES
PROBLEM

We consider a generalized Stokes problem in two dimension :

au—vAu+Vp=f in £ u=gonl =00
(S){ V-u=0 in £ (with f[.g-ndy=0 ~ (15)

where o and v are positive constants. Generalized Stokes problem is solved by saddle
point algorithm which contains two kinds of elliptic problem. One is problem for
velocity with Dirichlet boundary condition, the other is problem for pressure with
Neumann boundary condition for preconditioner : (vI;* + a(—A);?) to improve
convergence of saddle point solver[CC88].

We consider two alternatives of DDM approaches. One approach is to consider
generalized Stokes problems in each sub-domain. This approaches needs CG solver for
the saddle point problem of each sub-problem, in each iterative procedure of DDM.
Therefore this method is not better because of high cost of iterative solver for sub-
problems.

The other is to apply DDM only to the elliptic solver in generalized Stokes saddle
point solver. In this method we can use the direct solver as elliptic solver, which is
effective for small size sub-problems.

We use Dirichlet type DDM for elliptic problem of velocity, and Neumann type
DDM for pressure.

The test problem is the kernel of implicit scheme for time dependent
cavity flow problem. a(= 68.28)(r(= 0.001715)) is reciprocally proportional to
the time step(Reynolds number, respectively). We use P1iso P2/P1 mesh for
velocity /pressure. Table4 shows computation time by second in various numbers of
pressure nodes. In small size problems, time for preconditioner of pressure consumes

almost time of the solver.
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Table 4 Result of generalized Stokes problem on ADENA (256 CPUs, ¢ = 107*%)

7 pressure node 64 x 64 96x96 128x128 160x160 192x192 224x224 256x256

solver total 174.80 215.51 278.44 361.73 468.03 598.71 797.24
velocity 16.72 23.45 43.78 78.58 127.48 201.67 307.33
Neumann prob. 145.99 174.82 209.27 246.93 289.72 328.94 398.06
mass matrix 4.71 7.18 11.67 17.84 26.28 35.69 49.00

time (sec.)

5 CONCLUSION

We implemented the DDM for elliptic problem on massively parallel computer
ADENA. Numerical results show that Dirichlet type is more fast and stable than
Neumann type. Another implementation on vector parallel computer shows that we
need much faster algorithm which can deal huge number of sub-domains. Application
of elliptic DDM to the generalized Stokes problem is suitable for parallel processing.
To get more high performance, we need to develop better preconditioner for Stokes
solver suitable for DDM.
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