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Abstract. This work treats a linear convection-diffusion problem. Diffusion and convection
may be equally important or convection may dominate the problem. The method of
characteristics is combined with an overlapping domain decomposition technique so that
domain decomposition is naturally combined with the time stepping. In each time step, the
algorithm first determines the characteristic solution. Then a diffusion problem is solved
in parallel on each subdomain with the characteristic solution as boundary conditions. No
iteration is needed between the subdomain problems. Adaptive time steps are used for the
characteristic tracing. The time steps used for the diffusion problems can be large.

Introduction
In this work, we consider the following linear convection-diffusion problem

u; — €V - (a(z)Vu) + b(z) - Vu=f, in QCR", n1=1,2,3.
u(z,t)=0 on 9N x{0,T],
u(z,0) =up(z) in Q at t=0.

Assume that the problem has been suitably scaled such that a and b are of the same
order. The parameter € can be very small, but it can also be large. We are going to use
the method of characteristics, see [DR] [Piro], to treat the convection part, and then
use an overlapping domain decomposition technique to treat a symmetric diffusion
problem. An important feature of this method is that no iterations may be required
between the subdomain problems. This is due to the way domain decomposition is
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combined with the method of characteristics.

Domain decomposition methods have been used for nonsymmetrical convection-
diffusion problems, see [BLP]-[CW], [W], [X1]-[XC], However, the methods proposed
in these papers are efficient only for diffusion dominated problems. For problems
where diffusion and convection are equally important or convection is dominating,
special care must be taken. In a recent work by Rannacher and Zhou [RZ], the
streamline diffusion method is used with an overlapping domain decomposition for
a linear convection dominated problem. This work has been motivated by [RZ].
Here we use the method of characteristics to treat the convection term. By doing
this, we get symmetrical problems when working with the diffusion part. Even for
diffusion dominated problems or problems where diffusion and convection are equally
important, the proposed algorithm will give better results than the conventional finite
element method. This is due to the characteristic treatment of the convection term.

The Algorithm

At a given time ¢, and for a given z, let X = X (z,t;%o) be the solution of:

G =b(X),
{ )%($,tofto)) = . (1)

If bis smooth, then there always exists a 75 > 0 such that (1) has a unique solution
for |t — tp] < 7p. Let us choose an integer N > 0 such that At = % < 79 and divide
[0,T] = UN_,[t"1,t"], t* = nAt. Backward tracing will be used to approximate the
solution of (1). Moreover, adaptivity of the step used in the backward tracing will be
needed. Thus let At; be the step used in the backward tracing from the point z, i.e.

At =" — " = m, At

Then define points at the approximate characteristic (streamline) backwards from z
by:

~n+1 =z,
oy mg—k o mp =kl o/ o= k+1
FT R =" me — b (z”"' ) Aty , for k=1,2,- - my

When k& = m,, one finds that

- gk
" =" Tme

The characteristic solution is now given by
" =u"(E"),

where u™ is the computed solution at time level t». When %" falls outside of ), one
takes 4" = 0. If nonhomogenous boundary conditions are used, we need to determine
the point where the characteristic curve hits the boundary, and take @™ to be the
boundary value at that point.

The above iterative procedure is simply using the explicit one step backward tracing
=z b(x) At over many local steps. For the domain decomposition, we assume
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that Q has been divided into ﬁnitg elements ) = Uger,e. Let Q;,4=1,2,...,m be a
nonoverlapping decomposition of ), such that each §; is the union of some elements.
To each {2;, we associate an enlarged subdomain

Q2 ={ec Ty dist(e,)<6}.

Hence, 02¢ forms an overlapping domain decomposition with overlapping size 4. With
each Qf, we use S§(02f) to denote the linear finite element space with zero traces on
Q% Note that the decomposition of ! can be different from time level to time level in
order to follow possible shock fronts.

Algorithm 1 (The characteristic domain splitting algorithm).

1. Choose ul € Sp(2) to be an approzimation for ug.

2. If u™ is known, do characteristic tracing to find

4" = u"(E") .

Tiizls can be done in parallel for each of the nodal points at time level
¥ {3

3. tOn e;ach subdomain QF, find uf“ in parallel for i = 1,2,...,m such
that

{ (‘-‘J&:Lv) + @V, Vo) = (f,u1), Vs € S9(Q9),
u,?"'l =4" on 59? .
4. From the patchwise solution u?"{'l, a global single valued solution
wtt=C ({uf“}:il) € Sp()
s constructed such that
e g2y < Dl z2q,)- (2)
5 Ift"t < T, go to the next time level.

For the above algorithm, detailed convergence analysis is given in [TDE]. We assume
that the local time step satisfies
C(b)
& —_—
Aty < Va

At
n“oo,V(m)

where C (5) is a constant depending on b, u™ is the solution computed at the previous
time level and V(z) is a neighbourhood of & such that the characteristic curve starting
from z and going backward is contained in V(z) x [t",t®+!]. Furthermore, if the

overlapping size satisfies
8 > co max(Vv Ate, h)|In At} , (3)
where ¢; is a constant depending on the maximum angles of the elements in the
overlapping area, then the computed solution u™ satisfies
u(t™) — w™|lz2() < C(h* + At) .
Above, C does not depend on ¢, which means that we get the same accuracy in a
region where the gradient of u is sharp.
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Numerical Experiments.

Asis shown by (3), for a given h and a given time step size At, we need to have sufficient
overlap to guarantee the computational results to be of accuracy O(h? + At).
As a test example, we consider a shock moving in the characteristic direction. It

22442
is known that ¢(z,y,t) = Z%EZE_———L"J; satisfies the heat equation ¢; — eA¢ = 0.

When € is small, ¢ is singular near the point = y = 0 for ¢ > 0. Defining
w(z,y,t) = ¢(z — t,y — ¢, t + 0.1), one may easily verify that u is a solution of

{ U ~— AU + Ug + Uy =0,
u(z,y,0) = ¢(z,y,0.1).

This solution represents a shock moving in the direction of b = (1,1). See Figure 1 for
the location of the shock at different times.

In the computations, the domain  is taken as = [0,1] x [0, 1]. It is first divided
into coarse rectangular subdomains with size H = H; = H,, and then each subdomain
is divided into fine mesh rectangular elements with size h = h; = hy. Both the fine
and the coarse meshes are uniform. A bilinear finite element space is used in the
computations. Each coarse subdomain is extended by L elements into its neighbours.
This defines the overlap. In the following tables, m x m is the number of subdomains
and 7 X n is the number of elements in each subdomain. Hence H = 1/m, h = 1/nm.
We let || - || denote the discrete L%-norm.

The effect of varying the overlapping size L, and the number of subdomains m, is
investigated in Table 1. Thus, the values of €, At and h are fixed. Choosing m =1
means that we are solving the global problem without domain decomposition. The
computed solution ™ based on domain decomposition (m > 1) is compared with the
exact solution u(t™) and the global solution w} (m = 1), at t" = 0.5065. From the
table, one may observe that for different m, just one or two elements of overlap is
needed to give the same accuracy as the global solution. However, by increasing the
overlapping size L, u™ is getting closer and closer to the global solution ug.

In Table 2, different values of € is tested. When e is getting smaller, the shock
becomes sharper as one should expect. We observe that for large €, more overlap is
needed to retain the accuracy of the global solution. By decreasing At, a relatively
small overlap may also retain the accuracy. When € is small (¢ = 0.01), just one
element of overlap is sufficient. Figure 1 shows the computed solution for € = 0.01 at
different times. The figure for the analytical solution looks exactly the same.

Conclusion

The method of characteristics is combined with an overlapping domain decomposition
technique to solve a convection-diffusion problem. When € is small or At is small, one or
two elements, are enough overlapping to get as accurate solution as the global solution.
No iteration is needed between the subdomain problems. However, by increasing the
overlapping size, the domain decomposition solution gets closer to the global finite
element solution. When e is large, more overlap is needed or one should decrease the
time step size in order to decrease the needed overlapping size. By combining the
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domain decomposition method with the method of characteristics, the algorithm is
able to capture sharp travelling shocks.

m| o | L u(®) —umlle | Hu@) —utls | 1uE —vle | Llud —u”|s
140 - 6.96.10~2 1.1817 - -
4101 3.96-1072 0.3629 0.1062 1.5284
41103 5.86-1072 1.0120 1.15-10"2 0.1670
411015 6.83-10~2 1.1621 1.30-102 0.0197
51811 5.33-1072 0.8033 0.1175 1.9780
51812 3.30.1072 0.5448 3.72:1072 0.6389
51814 6.54-1072 1.1070 4.32.1072 7.48-102
8|5 |1 1.33.10~* 1.9804 0.2026 3.1568
815 |2 8.96:1073 0.1605 6.39-10-2 1.030
81513 4.84.1072 0.8264 2.17-10"2 0.3558

Table 1 e=0.1, At=1/160, t*=81/160,
u(£™): known solution, v™: computed solution, ug: global finite element solution.

e | At |t [m|n [L]ju@)—ulle | 2ue)—ulls | uf-u"le | lug - vl
0.011/160 | 81 |1 |80 - 1.7365 21.8401 - -
0.01|1/160| 81 | 4 |20|1 1.4983 18.9283 0.3439 3.3324
0.01|1/160 | 81 | 4 |20|3 1.7226 21.6590 2.05-102 0.2012
0.01|1/160| 81 | 4 |20|5 1.7358 21.8293 1.10-102 1.20-1072
0.01|1/160 | 81 | 8 101 1.1523 14.7338 0.7372 7.8819
0.01|1/160| 81 | 8 |10 3 1.7017 21.3977 4231072 0.4704
0.01|1/160 | 81 | 8 |10 5 1.7347 21.8144 2.20-10° 2.74-10~2
0.5 |1/160 | 81 | 1 {40 - 7.89-10~* 1.86-10~2 - -
0.5 |1/160 | 81 | 4 (10| 3 1.63-102 0.3306 1.71-1072 0.3487
0.5 [1/160 | 81 |4 |10 |5 5.46-1073 0.1087 6.25-103 0.1268
0.5 |1/160 | 81 | 4 10 8 7.19-10~* 1.28-102 1.50-102 3.04-102
1.0 [1/500 | 250 | 1 |40 | - 1.74-10* 4.07-10—3 - -
1.0 | 1/500 250} 4 |10 3 2.26-1073 4.54-107% 2.43-107° 4.94-10~2
1.0 | 1/500 [ 250 | 4 | 10| 5 5.64-10* 1.09-1072 7.38-10~ 1.49-10~2
1.0 | 1/500 {250 4 |10 6 2.40-107* 4.37-1072 4.14-10~* 8.35-10%
1.0 [1/500 | 250 | 4 |10 7 5.87.107° 9.00-10~4 2.33-10* 4.69-10~2

Table 2 nt: number of time steps, w(¢"): known solution,
u™: computed solution, u%: global finite element solution.
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a) b) )

Figure 1 The computed solution with H = 1/10,h = 1/200,L = 1, ¢ = 0.01

0 . : ’

At = 1/100, at different times: a) t=0.01, b) t=0.1, ¢) t=0.2 d) t=0.3 e) t=0.4
£) t=0.5.
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