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1 ABSTRACT

This paper describes a domain decomposition method for advection-diffusion problems on
a two-dimensional domain that has been subdivided into a number of non-overlapping sub-
domains, each covered by its own structured grid. The discretization of the problem’s PDE
over the entire domain is based on local finite difference discretizations on each subgrid,
together with several so-called coupling equations that are needed to couple the discrete
solution at subdomain interfaces. The choice of coupling equations depends on the discrete
problem at hand and should result in a fast converging overall iterative procedure, at the
same time maintaining sufficient accuracy of the solution across the interfaces. We show how
both requirements can be fulfilled within the approach of optimized parameterized interface
conditions when the grid at the interfaces is non-smooth, thereby extending our previous
work on regularly patched Cartesian grids.

2 INTRODUCTION

One of the main issues in domain decomposition is the specification of suitable
interface conditions at the artificially introduced internal boundaries of subdomains.

1 Delft Hydraulics, Dept S&O, P.O. Box 152, 8300 AD Emmeloord, the Netherlands,

Kian.Tan@wldelft.nl
2 Delft Hydraulics, Dept S&O, P.O. Box 152, 8300 AD Emmeloord, the Netherlands,

Mart.Borsboom@wldelft.nl

Domain Decomposition Methods in Sciences and Engineering, edited by R. Glowinski et al.
© 1997 John Wiley & Sons, Ltd.



118 Domain Decomposition with Patched Subgrids

Obviously, the order of accuracy of the discretization inside the subdomains should be
retained over the interfaces. Also physical requirements like mass conservation should
be fulfilled. At the same time however, these internal boundary conditions should be
designed for fast convergence of the overall iterative solution procedure that pieces
together the global solution from the solutions of the different subproblems.

In this paper we propose a method for constructing such proper interface conditions
in grid patching for the coupling of the solution of non-overlapping subdomains,
each having its own grid. They can be regarded as discretizations of so-called
coupling equations, involving suitably chosen combinations of several derivatives
which are expressed in either a global coordinate system or a local computational
coordinate system. The performance of the resulting domain decomposition algorithm
is illustrated for the two-dimensional model problem

: 2. 2
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Here, I'; denotes those parts of the boundary where Dirichlet inflow conditions are
imposed. On the remaining part of the boundary 6Q2\I'; we specify outflow conditions,
based on one-sided discretizations of the advection part of (1).

3 THE MODEL PROBLEM ON NON-OVERLAPPING
SUBDOMAINS

Consider problem (1} on a number of naturally ordered parallelograms 2,

Figure 1 Example of a strip decomposition.

Prior to the discretization, (1) is transformed on each subdomain to a local
coordinate system. We consider on each subdomain k the linear transformation

& = &(x.y), me = m(x,y). that transforms Qy to a rectangle in computational
space:
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with —5 < ¢ — % < Z. The resulting transformed equations are then discretized
in the local, i.e. per subdomain, computational coordinate system, for which uniform
Cartesian grids are employed. Without loss of generality we may assume that each
local Cartesian grid has mesh size 1, since the actual mesh size in physical space can
be included in the transformation via scalars he, and b, .

To keep our discussion of coupling clear, we consider only grid lines in £;-direction
that connect at the interfaces, i.e. h,, = h,, Vk. To facilitate the specification of the
discrete equations holding at the subdomain boundaries, the local grids extend beyond
both the physical and internal boundaries, these boundaries lying in between the outer
two layers of grid points. See Figure 2, where the bold lines indicate the boundaries of
subdomains. The O- and e-points indicate the locations where respectively boundary

conditions and coupling conditions are discretized (cf. Section 4).
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Figure 2 Two subdomains and two local grids.

For later purposes it is convenient to define transformations with respect to the
normal and tangential direction at interfaces as well. Let vgpy1 and vgq1, denote
the unit outward normal (at the interface) to Q) and Qp4,. Tangential vectors
Tik+1 and Trppir are defined as the vectors that are obtained by rotating vy
and vg41; counterclockwise. For our decomposition, we have that V&, vgpy1 = vg,
Thk+1 = TR, Vh+t1k = VI, and 7p415 = 7. The local coordinate transformations
&(ve, TR), m(vr, Tr) and &x(vr,71), me(ve,72) are still defined by tral}sformation
matrices of the form (2), but with the rotation angles ¢, and 1 replaced by ¢, = ¢~
1/} =0 and ¢ = —7 + ¢y — 1, ¥ = 7, respectively.

The transformed equations that are discretized per subdomain k are:

6Ck k 8Ck k 6Ck k 82C]C k 82(3},; k 620k
et d — — = =D D= = on 3
o0t Ulog, T Vo~ Decgge T Pmans T Paggy, o e G

with transformed velocities and diffusion coefficients z{‘, vé”, D&, Df;n, and Dé'n. Tts
discretization is given in Section 4.

8.1 Coupling equations

The key point of this paper is the construction of equations that provide an accurate
and fast coupling of the individual solutions ¢ at the interfaces I'pryy1. From a
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continuous point of view, it is sufficient to impose (see e.g. [QL88])

Bck . 8ck+1

= on IMgrt1 k=1,...,K—-1, [« (4a)
Ok+1 Ovprt

cpr1 = cp on Dpiip k=1,...,K—-1. [~] (4b)

The multi-domain formulation (3)—(4b) is then equivalent with the original problem
(1), since c|o, = cx. Note that for each interface I'yz11 = L'yy1x two conditions are
formulated. For comparison with the discrete conditions that follow, we have listed
them as conditions for either subdomain k ([/]) or subdomain k+1 ([~]). For obvious
reasons these conditions are called coupling conditions, or interface conditions. As
indicated in e.g. [Tan92] it is allowed to use more general conditions

Dpppa(cn) = Prpyq(cry1) on gy k=1,..., K—1, [ (5a)

@ pin(crt1) = ®ryarn(on) on Tryik k=1,...,K—1, [~]  (5b)

as long as they imply conditions (4a) and (4b). This seems to be an academic matter
only, would it not be that these conditions have a significant influence on the rate
of convergence of the solution procedure for the global discrete problem. This has
motivated the authors to develop coupling equations involving more general operators:

o 2
Q= Gy (I + hyBij5— + (hy)?6 ) +

i
aTij janﬁ

6)
7] 0 o2 (
he ;= | T+ hpvij=— + (hy)2€ij—

&% 5 ( + hpvij o7y + (hy)“eij o2 )

where i, j are either k, k+1 or k+1, k, depending on the direction in which the coupling
operator is used. Scalars hg; and h, are the mesh size coefficients in transformations
(2).

In equation (6), (i, ij, Bij, Vij» 6ij, and €;; are coupling functions from T';; —R,
not coeflicients. It is clear that these functions have to satisfy certain conditions to
guarantee equivalence of the multi-domain problem with the single-domain problem.
The imposed conditions should still imply (4a)-(4b), which is already obtained as soon
as &, and CIDk 11 are distinctive enough.

In the remaining of this paper we assume the coupling functions to be optimized
for convergence speed following the strategy of [Tan95]. This optimization of coupling
functions turns out to provide equivalence automatically.

4 The model problem on virtually overlapping local grids

Having specified the entire continuous multi-domain problem we now consider its
discretization on local grids of size (n;, + 2) x (ny + 2). We refer to Figure 2 for

a.schematic diagram of the location of grid points in the two-subdomain case. The
discrete multi-domain problem consists of:

¢ a standard 9-point discretization based on central differences of the

transformed equations (3) at the mg, X m, ‘inner’ grid points of each
subdomain;
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e a discretization of the boundary conditions at the O-points with 3 x 2- or
2 x 3-point (at the corners 2 x 2-point) computational molecules;

o discrete equivalents of coupling equations, applied at the e-points;

e backward Euler time discretization.

4.1 discrete coupling equations

Obviously, the spatial discretization of (1) in the interior grid points is second-order
accurate. Our aim is to formulate discrete analogues of coupling equations that do
not affect this accuracy. Hereto we employ a similar two-step discretization as used
for (1). We first transform the continuous coupling equations (5a)—(5b) to the local
coordinate systems and then discretize the result with 2 x 3 stencils.

Note that because of the choice of the stencil, we are unable to discretize all terms
of the transformed coupling equations. So we (have to) neglect all terms containing
second derivatives in £ and &1, which includes certain mixed derivatives.

As a consequence, discretized coupling equations contain both transformation and
discretization errors. In order to quantify them, let &; and €41 be the exact solutions
of the discrete coupling equations, satisfying:

(@peys + To,pyy + Doy @) = Rppgy + Lo, + Doy @) s (0] (7a)

(Ppp1r + Ts,,,, + békk+1)(5k+1) = (Ppy1x + T©k+1k + b¢k+1k)(5k) ] ()

The T-terms and D-terms represent transformation and discretization errors.
We will first address the size of the transformation errors.

k+1k

Proposition 4.1 Let @, be of the form (6) (Vkr41 = VR, Tkk+1 = Tr). Consider
the coordinate systems (& (vr, Tr), Me(VR, TR)) and (§k+1(VR, TR), Met1(vR, TR)) which
specify the angles ¢k and ¢k+1 between de interface and the &, and &gy axis. Then

~ 8 Ck

To,, (k) = —hepy, (hy)?orprierkts tan P - 73 (8)
2 2 2 Bep
Ta,, ., (ckt1) = —hg i (hy) Ckkr1€prsa tan gy - arg (9)

A similar proposition holds for @, , ;.

This proposition shows that transformation errors increase with increasing skewness
of the £é-coordinate direction with respect to vg, as expected. However, for reasonable
grid connections, i.e. when q@k — ¢r41 & 0, transformation errors almost entirely cancel
out, since they are made in both left- and right-hand side of the coupling equations.

Even when the transformation errors do not cancel, they can still be acceptable.
From (8) and (9) it follows that these errors are of third or second order in the
grid spacing, depending on whether the leading term of the coupling operators is
zeroth or first order. The former applies when the coupling condition has an important
Dirichlet component, while the latter applies when the coupling consists of Neumann
plus higher derivatives. Of course, this second or third order transformation error is
only acceptable when coefficients like ez1(tan dry1 — tan dy) < O(1) (cf. (8)~(9)).
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As for the discretization errors we remark that the D-terms in (7a)—(7b) are
O((he,)?) + O((hy)?). The same important remark as for the transformation errors
can be made here. Discretization errors in coupling equations tend to cancel out when
grid connections are not too irregular, i.e. when hg, — he, ., = 0. Note that it is the
difference between the angle of subgrids at both sides of the interface that is important
in the transformation errors, while it is change in the mesh size in &-direction that is
important in the discretization errors.

Summarizing, the discretized interface conditions provide a second-order accurate
coupling between the solutions per subdomain, which error tends to cancel out for
small differences in subgrid angles and mesh sizes. This brings us to the conclusion
that for the type of decomposition and discretization comsidered in this paper, the
coupling at interfaces is an entirely transparent process. The discrete solution behaves
as if no interfaces would have been present. This is also illustrated by taking ¢ = ¢,
he, = he, Yk, in which case overlapping grid points actually coincide. Then our
approach automatically reduces to our coupling technique for regularly patched grids
([TB93]), which can be regarded as nothing else but a preconditioning technique for
the discrete system of equations, without altering its solution.

We remark that the cancellation of discretization and transformation errors in
interface conditions is entirely due to the special extension of the subgrids over the
interface with the interface itself in between. Note also that our discrete coupling,
by the simple fact of discretizing (5a)—(5b) automatically includes some form of
interpolation.

5 Numerical experiments

The entire set of equations to be solved each time step can be represented by
a block tridiagonal system Bec = f. Its principal submatrices By represent the
discretization of (3) in the interior of each of the subdomains, together with the
discretized boundary conditions and the left-hand sides of the subsequent discrete
coupling equations. Off-diagonal blocks only contain the right-hand sides of the
discrete coupling equations. This system Bc = f is solved by GCR [EES83], applied
to the right-preconditioned system BM ~'Mc = f. The preconditioner M is taken
as M = blockdiag(B11, ..., Bkk). ILU(2)-preconditioned BiCGSTAB(4) ([SF93]) is
used for solving up to sufficient precision the subsystems Byrusr = 5 that occur during
the GCR process.

The first example deals with a simple advection problem on Q = [~1,0] x [-1,1] +
[0, cos ¢a] X [z sin ¢o — 1,  sin ¢o + 1] with velocity field (v;, vp) = (10, 10) and negligible
diffusion D = 107 on two grids, one of which is rotated slightly with respect to
the other, ¢1 = 9 = 0, ¢ = arctan(0.5). To study the effect of interface coupling
on the spatial discrgtization error, we take a small time step At = 10™*. A cone
o(z,y) = 1078(E+*+6+5) ig taken as initial condition.

The error in the numerical solution consists of both space and time discretization
errors made in the interior of the subdomains, and coupling errors made at the
interface. The error introduced at the interface can be visualized by following the peak
of the initial condition while it propagates from the first to the second subdomain and
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plotting the error in the numerical solution at the exact spot of the peak. Bilinear
interpolation is used when this spot does not coincide with a grid point, resulting
in an interpolated value c*(¢) (which explains the ‘hops’ in the figures). Although
this adds interpolation errors to these figures, tendencies for the development of the
discretization error can still clearly be noticed in the figures. Figure 3 shows the error

T R AU TR YL
ke, = ey = By =1/15

Y4

Figure 3 Error development at peak spot, At = 107*,

development at the peak for this Example 1, for two different mesh sizes. We clearly
observe that at the interface virtually no error is introduced, since no jump takes place
at Zt‘i = 500. We also recognize the second-order accuracy of the scheme in space. Note
that the error in both subdomains grow equally fast, although the space discretization
error is expected to be smaller in subdomain 2 where the grid has been rotated in the
direction of the flow.

In addition we verify the transparency of the coupling by comparing the accuracy
of the discrete solution when increasing the number of interfaces for a problem of
fixed size. The advection problem of Example 1 is solved on a decomposition of 20
thin strips, each strip covered by a grid of 5 x 62 points, which includes a row of
virtual points at all sides. We set ¢ag41 = 0 for the odd-numbered subdomains and
@21, = arctan(0.5) for the even-numbered subdomains. This gives rise to a ‘stairway’
pattern of subdomains, the solution on which (Figure 4) should be comparable to the
previously computed numerical solution for A = 3% since the number of grid points at
which the PDE is discretized in the interior of subdomains is the same. The accuracy
of the solution on 2 and 20 strips turned out to be indeed comparable; the difference

in the error development at the peak spot was less than 5 %.

6 Concluding remarks.

We have presented a patched-grid domain decomposition method in which subgrids
may vary per subdomain. The patching of the solution at subdomain interfaces is
provided for by optimized interface conditions. Such optimized interface conditions
have been designed to meet accuracy requirements as well as convergence rate
requirements. The method is discussed here for non-overlapping strip decompositions



124 Domain Decomposition with Patched Subgrids

(a) initial condition at t=0 b) computed solution at t=0.1

Figure 4 Multiple interfaces.

and simple structured grids only, but can be extended to any decomposition into
non-overlapping subdomains and any grid transformation, due to the formulation of
the coupling conditions in terms of local normal and tangential derivatives at the
interfaces, which are then transformed to the local computational coordinate system.
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