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1 INTRODUCTION

The basic disadvantage of the standard two-level method is the strong dependence
of its convergence rate on the size of the coarse-level problem. In order to obtain
the optimal convergence result, one is limited to using a coarse space which is only
a few times smaller than the size of the fine-level one. Consequently, the asymptotic
cost of the resulting method is the same as in the case of using a coarse-level solver
for the original problem. Today’s two-level domain decomposition methods typically
offer an improvement by yielding a rate of convergence which depends on the ratio of
fine and coarse level only polylogarithmically ([BPS86], [BPS89], [DSW94], [Man93],
[FR91], [MT]). However, these methods require the use of local subdomain solvers for
which straightforward application of iterative methods is problematic, while the usual

application of direct solvers is expensive.
We suggest a method diminishing significantly these difficulties. Following the
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unpublished technical report [VK95], we develop a simple abstract framework based
on the concept of smoothed aggregation introduced in [VMB] with aggregates derived
from the system of nonoverlapping subdomains. We show that the smoothing of the
coarse-space by an appropriate polynomial of degree about N;¢ (symbol d denotes the
dimension of the problem to be solved and N, is the characteristic number of degrees
of freedom per subdomain) can assure the coarse-space size independent convergence.
The associated cost is significantly smaller than that of the local solvers in the case of
standard domain decomposition. Moreover, it decreases as d increases.

Because of the page limit, we only apply the abstract framework to for the case
of scalar equation with jumps in coefficients. More general problems and numerical
experiments will be treated in [TVB].

2 ABSTRACT FRAMEWORK
We are interested in a numerical solution of a system of linear algebraic equations
Ax=Db (1)

with a symmetric positive definite n X n matrix A. Let P:IR™ - R", m <<n bea
linear injective tentative prolongator and S € [IR™] a symmetric smoother commuting
with A. Let us set

As = 54, Sl:f—%Asy we(0,2), p=p(As). @)

Furthermore, let x «— Sg(x,b) and x « Sg/(x,b) be relaxation methods consistent
with (1) such that their linear parts are matrices S and S’. Our algorithm is a standard
variational two-level method with a smoothed prolongator SP, a pre-smoother Sg and
a post-smoother Sg-.

Algorithm 1 Given the initial approzimation x,

repeat

1. x «— 85(x,b),
2. solve (PT AsP)v = PTS(Ax —b),
3. x—x—SPv,
4. x + Sg/(x,b)

until convergence;
5. Post process x «— Sg(x,b).

In the following, we will prove that, for a suitable S and P, steps 1-4 of the algorithm
ensure convergence independent of the dimension ratio n/m in the Ag—norm. The
postprocessing step 5 of the algorithm enables us to prove the same result in the
energy norm of the original problem (1). The main disadvantage of the convergence
estimate in As—mnorm is its indirect coarse-space dependence as for a smaller coarse-
space we need a more powerfull smoother S to get the optimal convergence result.
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Assumption 2 Let the smoother S be a symmetric matriz that commutes with A, and
p(S) < 1. We assume that the tentative prolongator P satisfies the weak approzimation
property in the following form: For every u € R™, there exists v € IR"" such that

lu ~ Pyl < C1Cp(m, n)e™2(A)[ul]a. ®3)
For the prolongator smoother S, we require
p(S74) < C3Cp*(m, n)o(4), (4
where Cp(m,n),C1,Cs > 0, and Cy, Cy do not depend on m and n.

Remark 3 For second order problems, we typically have Cp{m,n) = H/h (the ratio
of local meshsizes on the coarse and the fine level). In Section 3 we construct S as a
suitable polynomial in A for which p(S2A) =~ N~2p(A), where N denotes the degree
of S. In order to satisfy Assumption 2, we need N == H/h. This choice yields a coarse
level matriz (SP)T A(SP) with a number of nonzero entries per row uniformly bounded
with respect to H/h. Detailed arguments will be given in Section 3.

The following theorem shows that, under Assumption 2, the convergence rate of
Algorithm 1 is independent of dimensions m and n of the coarse and fine spaces.

Theorem 4 Let e; denote the error after i iterations given by steps 1-4 of Algorithm
1, and €7 = Sey the error smoothed by step 5. Then, it holds that

leirili, < Q= Co)lleild,, and |lef|% < (1= Cs)'lleol, (5)

(C1C2) " 2w(2-w)

where C5 = TG G T (=) 0. Here w is the damping parameter from (2).

Proof. Since p(S) < 1 and ef = Se;, we have || [|4 = ||eillas and ||eollas < leo]la-
Therefore, the second inequality in (5) follows from the first one.
It is obvious that the linear part of the steps 1-4 is given by

S'[I - SP(PTAsP)*PTSA]S = S'S[I — P(PT AsP)*PT Ag].

Thus, the method can be viewed as a standard two-level method for solving a problem
with matrix As (in place of A) and prolongator P (in place of SP).

Since I — P(PT AgP)~'PT Ag is the Ag—orthogonal projection onto As—orthogonal
complement of Range (P) (i.e., projection onto Ker (PTAg)), §'S = 85', p(S) < 1,
and p(8') < 1, we have

Iouf, 15}

S'S[I — P(PTAsP) 'PT Agl|%. < su min{ ,
” [ ( S ) S']”As p ”X”2AS ”Xllizqs

XecKer (PTAg)

In the rest of the proof, we will show that at least one of the expressions in the
minimum above is bounded by 1 — Cs for any x € Ker (PT Ag).

We first express ||S'x]| aq/||x||4s in terms of ||Sx|jas/|IX[|as. It is easy to see that

14Xl o o(as)  implies I5%l3, Crpuw(2 - w). (7)

Il ~ =l
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Let us recall that Ag = AS?, and A and S commute. Hence, we can write 15%x||% =
HSXHis, and
lAsx|> Il Asx]? 1523 _ [|AS?x] 1SxII%, ()
=, — 122 G, B2l B,
Now, consider x € Ker (PTAg) = Ker (PT AS?). Then, sectting u = $°x, we have
u € Ker (PTA) = Range (P)*+. From the weak approximation condition (3), we

estimate the ratio ””“;Si% using the standard orthogonality argument: For v € R™
A

from (3), we obtain
% = (Au,u) = (Au,u— Pv) < [[Au]| [Ju— Pv]| < CiCp(m,n)p"*(A)|| Aul [[u].4.

Therefore,
|| Au]]
llafla

Substituting this estimate into (8) and using Assumption 2, we get

> G705 (m, m)p"/2(4).

JASKE o s 15l Y
> C1*Ch%(m,n)p(A £ > (C1C) °p(Ag) 5= (9)
i, 2O Op mmeld) e 2) W,
Thus, by (7)
1'%, A .
T2 <1 - 2 (C1Cr) T w (2 — W)
R, U T, ()

Since ||Sx||%,/|I%]14, < 1, we may finally write using (6)

S’ ST — P(PTAsP) ' PTAS]IA. < sup min{o,1- a(C’lCz)’zw(Q —w)}.
As €[0,1]

The expression on the right hand side is bounded by W)l"zw@—ﬁ which completes
the proof. O

3 EXAMPLE OF A TENTATIVE COARSE SPACE AND
PROLONGATOR SMOOTHER

Let © ¢ R? be a Lipschitz domain and 7 be a shape-regular (locally quasiuniform)
finite element mesh on €. Let V- be P1 or Q1 finite element space associated with the
mesh 7 with zero Dirichlet boundary conditions imposed at some nodes of 7 N 9.
Note that, for the purpose of numerical solution of the discretized problem, we do
not need any assumptions on the form or measure of the part of the boundary with
Dirichlet conditions imposed. For simplicity, we assume that the finite element basis

functions ¢; are scaled so that ||¢;||z~ = 1. We consider the following elliptic model
problem: Find u € V7 such that

IOLICIN

10

2
Aq(u,v) = (fv)2) Vv €V, Aq(u,v) = Z/ a(zx)
i=1 Q
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We allow large variation of a(z) between the subdomains; more detailed assumptions
on a(z) will be specified below.

Finite element discretization of (10) on V7 leads to a system of linear algebraic
equations with a symmetric positive definite matrix Ay. In order to accomodate
discontinuities of the coeflicient a(z), we will solve the system with a diagonally scaled
matrix A = D™Y/2A7D~1/2 instead, where D = diag(A7).

For the sake of construction of the tentative prolongator P we need a system {€2;}1%,
of closed disjoint subdomains of §2 such that each subdomain €; is a simply connected
closure of an aggregate of elements. We assume that each node of the underlying finite
element mesh belongs to exactly one of the subdomains and that there is a layer
one element wide between two neighboring subdomains. Further, we assume that the
family of subdomains {§2;} satisfies the following properties:

Assumption 5

(i) We assume that there is about the same number of elements in each subdomain
€2;. Let us denote the characteristic number of elements per subdomain by N,, and set
h= Nef.;l/ 2 We require that subdomain Q; can be mapped onto a reference subdomain

~

Q2 =1[0,1] x [0,1] by a one-to-one locally Lipschitz mapping G;:

@l <o, loer @l <MY, v=a@een,
h(z) ch
where h(zx) is the local meshsize in the neighborhood of  and ¢,C > 0 are constants
uniform with respect to i. Symbol || - || denotes a matriz operator norm.
(i) The coefficient a(z) is allowed only a modest variation within each subdomain
in the sense that a(z) = a; >0, Vz e Q.
(#i3) If Q; and Q; are adjacent subdomains ( there ezists T € T so that 8T NOQ; # 0
and 0T NAQY; # 0 ) and a; >> a;, the jump in a(z) occurs along 0. In other words,
the discontinuity is located on the boundary of the subdomain with the larger value of

a(z).

Conditions (11) imply that an element T C ; of size h(z) is mapped by G; onto
G;i(T) of size about h. Thus, G; maps locally quasi-uniform mesh on §; onto a quasi-
uniform mesh of meshize f, and subdomains €2; are reasonable aggregates consisting
of about N, = b2 elements. If the mesh 7 is quasi-uniform (h(z) ~ h), then h(z)/h
can be viewed as the characteristic size of ;. Note that, if a subdomain decomposing
algorithm uses only the adjacency of elements or nodes and generates shape regular
subdomains in the case of quasiuniform mesh, then for locally quasi-uniform meshes
it can be expected to generate subdomains satisfying (11).

The purpose of assumption (%) is to ensure that the basis function ¢; associated
with a node v; € (), satisfies
alpj, v;) = a;. (12)
If (iti) were not satisfied, (12) could be violated for the basis functions corresponding
to the nodes on 8€; adjacent to a subdomain £; with a; >> a;.

The tentative prolongator based on scaled aggregations is defined as follows.



238 Two-level Method

Algorithm 6
. [ 1, if the node v; belongs to subdomain €1,
(i) Set Bij = { 0, otherwise.
(i) Set P + DY2P, where D = diag(Ar).

For each subdomain, we introduce an index set F; of all unconstrained (with no
Dirichlet boundary conditions imposed) degrees of freedom associated with €2;. Let
II : R® — V., denotes the finite element interpolator given by IIx = Z;‘___l 95,
the local interpolator Il;x = 3 .. p ;p;, and discrete 2(F;)—norm ||x||l22(Fi) =
Yer THhx €R™,

Let Q; be a subset of ; consisting of all elements T° C £2; such that all degrees
of freedom on T are unconstrained. On each subdomain we define a linear mapping
Q: : R™ — TR" (acting on the degrees of freedom of F; only) to be the I*(Fj)-
orthogonal projection onto the one-dimesional space of vectors spanned by ¢ € R"
such that ¢; = 1 for j € F}, zero elsewhere.

Lemma 1 (Discrete scaled Poincaré-Friedrichs inequality) For every u €
R", it holds that
u — Quulliery < CN 2l o), (13)

the constant C > 0 depends on the constants from (11) and on the aspect ratios of
elements in Q; only.

Proof. Consider a transformed function & = v o Gy ' ie. (%) = u(G;}(2)),# € O
Let us define a weighted LZ—norm by fullzz = llu(z)/h(x)]|z2. Owing to (11),
H'—seminorm scales uniformly, i.e. |u] Q) ~ |1 m1(ey- 1t can be easily seen that

“’M“Li(m) ~ ﬁ‘lflﬁllm(@) and ”HiX”Li(Q’) A [1xliz (-

Let ¢ € IR™ be the vector given by ¢; = 1 for j € Fj, zeroes elsewhere (as in the
definition of @;). Then, by the equivalence of I(F;) and L% () for finite element
functions , QO C €;, and the scaling above, we have for « € IR

lu—acllew ~ (Lu-algsq, (14)

< Thu ~ ailLi(m) ~ il_l“(niu —ajo G?Hp@,

Using the definition of Q;, inequality (14), Poincaré-Friedrichs inequality on {2 and
the uniform scaling of H' seminorm, we obtain

lu—Qiullizry = infoemrflu—ocllizmy < Ch™! infyep [|(Thu) 0 G — iz

< Ch™Y(Iu)o Gi—lffn(ﬁ) < Cﬁpllﬂiu’ffl(gi)’

A

concluding the proof. [
Now we are ready to prove the weak approximation property (3).

Lemma 2 (Weak approximation property) Under Assumption 5, the inequality

(3) is satisfied with Cp{m,n) = NP and Cy that depends only on constants from
(11) and aspect ratios of elements.
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Proof. We set @ = DY2(3"T  @;)D~/2. Let u € R"™, x = D'/2u. Then, using (12),

m m
iy = |xl1%, = Ae(lx,Ix) > Y A, (Ix,Tx) > C > aillx| g1 (a,),

=1 =1

m m
lu — Quif* = |DY2(I = Y Qux|® < C ) aillx ~ QixllEs,-
i=1 i=1
From here, setting Pv = Qu and using Lemma 1 and p(4) < C, the statement follows.
O
In the rest of this section we will discuss the choice of the prolongator smoother S.
Let p be the estimate of p(A) satisfying

p(A) < p< Cpp(A). (15)
For any integer ¢ > 0, we define p; = Qﬁi, Ag = A and

3—1
4. _
Si=][wi;, Wi=1I- 305 A A=W A (16)

=0

It is easy to see that deg(S;) < %3i. We choose the prolongator smoother S = Sk for
K such that
deg(Sk11) > gN2/? > deg(Sx), (17)

where g € (0,1] is a given parameter.

Theorem 7 Let the tentative prolongator P be given by Algorithm 6 with the system
of subdomains {;}/, salisfying Assumption 5. Let the prolongator smoother S be
defined by (15)—(17). Then, the statement of Theorem 4 is valid with the constant Cs
independent of the meshsize, coefficients a;, constant N.g4, and boundary conditions.
Moreover, the coarse-level matriz and the smoothed prolongator SP have a uniformly
bounded number of nonzero entries per row.

Proof. Due to Lemma 2, the approximation property (3) is satisfied with C(m,n) =
N2{?. Let us show that (4) holds with the same C{m,n). From definition (16), we
have S2A = Ak ;. By induction, we can prove p{4;) < p;: For 7 = 0, the inequality
holds by (15); assume it holds for j < i. Then, by (16)

(i) = max (1= 3574 < max (1= 3770 < o
Hence, p(Ax) < 97%p. Considering that, by (17), K = logs N;S/Z, we get (4). The
optimal convergence result now follows from Theorem 4.

Let us show that the number of nonzero entries per row of the coarse-level matrix
A, = (SP)TA(SP) is bounded uniformly with respect to Ne,. It is easy to see that
[A.];; can be nonzero only if supp(ILSPe’) N supp(HSPej ) # 0, where e’ is the i—th
canonical basis vector of IR™. Clearly, supp(I1Pe') is the domain Q; with one belt
of surrounding elements added. Bounded overlaps of such supports are obvious. The
smoother S adds at most g/, strips of elements. Consequently, each support has a
nonempty intersection with only a bounded number of other supports. O
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Theorem 8 Let the assumptions of Theorem 7 be fulfilled and the Choleski
factorization be used to solve the coarse-level problem. Then, the optimal number of
elements per subdomain is N, ~ n?/® and the system (1) can be solved to the level
of truncation error in O(n'-?) operations.

Proof. We only consider the components of the algorithm which cost more than O(n)

operations. During the setup, such procedures involve evaluation of SP (O(Nels/ 2n)
operations) and Choleski factorization of the coarse-level matrix, which costs O(m?) =
O(n?/N,s) operations. As Theorem 7 assures the optimal convergence result, we
only have to perform O(1) iterations. Nonscalable procedures during each iteration

are the smoothing (O(Nels/ *n) operations) and the back substitution (O(m-3) =
O((n/Nel,,/ 2)1'5). The statement follows by trivial manipulations. O
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