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Abstract

In this paper we present a characteristic-based, noniterative, nonoverlapping, domain
decomposition and space-time local refinement method to solve the initial-boundary
value problems for advection-reaction equations with various interfaces.

1 Introduction

Advection-reaction partial differential equations arise in a variety of applications
and often cause numerical difficulties. Conventional space-centered finite differ-
ence/element methods usually result in severe non-physical oscillatory solutions. While
upstream weighting techniques can eliminate the oscillations, they generate numeri-
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cal solutions with serious numerical dispersion [EW83]. Moreover, practical problems
often have various physical and numerical interfaces that introduce further complex-
ities. Physical interfaces arise when the media properties change abruptly, leading
to advection-reaction equations with discontinuous coefficients. Numerical interfaces
arise when domain decomposition or local refinement techniques are used. The solu-
tions of advection-reaction equations are generally smooth outside some small regions
and may have sharp fronts/discontinuity inside, which need to be resolved accurately
free of oscillation or numerical dispersion in practice. In this case local refinement
should be used within the sharp front regions. Domain decomposition should be used
when the governing equations {especially in the case of strongly coupled systems) are
imposed over large domains. One can see that numerical interfaces are introduced in
either case.

It is more difficult to develop domain decomposition and local refinement techniques
for advection-reaction equations than it is for elliptic and parabolic equations, because
in the context of advection-reaction equations locally generated numerical errors at
the boundaries/interfaces can be propagated into the domain and destroy the overall
accuracy/stability of the method. In this paper we present a characteristic-based,
noniterative, nonoverlapping, domain decomposition and space-time local refinement
method for advection-reaction equations with various physical/numerical interfaces.
To demonstrate the ideas, we consider the model problem

u+ (V(z,t) u)e + K(z,t)u = f(2,1), z€(ab), t€(0,T},
u(a,t) = g(t), te (0,7], (1)
u(z,0) = ug(x), z € [a,b].

Here V(z,t) > 0 is a velocity field, K(zx,t) is a first-order reaction coefficient,
Uy = %%_, U = %“ti. V(z,t) is continuously differentiable except at the interfaces d
(1=1,2,...,L—1witha=dy <dy <...<dp_y <dg =b) where V(z,t) has a

jump discontinuity in z. Problem (1) is closed by the following interface conditions

2
Vidi—, tyu(di—,t) = V(di+. )u(dy+,t), t€[0,T), 1=1,2,...,L—1. @)

2 An ELLAM Scheme

In this section we present an ELLAM (Eulerian-Lagrangian localized adjoint method)
scheme for problem (1) with smooth coefficients. Based on this scheme we develop a
domain decomposition and local refinement method. ELLAM was originally developed
for the solution of advection-diffusion equations with general boundary conditions
[CRHE90]. Let I and N be two positive integers, define the spatial and temporal
partitions x; = a + iAx for ¢ = 0,1,...,T and t, = nAt for n = 0,1,.... N with
Az =(b—a)/I and At =T/N. In addition, we introduce a local time refinement #, ;
at the outflow boundary {b} X [tn.tns1] by thy1 = ths > tpqg41 > -o. > tpgric >
tn1+10+1 = t,, Whose exact definition will be given in Section 4. At time the1 (or
the outflow boundary x = b), we define an approximate characteristic X(0:x,th11),
0 € [tn.tnta] (or X(6:5,1), 6 € [tn.t],) to be the tangent line emanating backward
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from (x,t,41) (or (b,%)). We also let z* = X (tn; @y tngr), b*(8) = X(t,;6,t), and @ to
satisfy a = X (tn; G, tne1)-

With any space-time test functions w that vanish outside of [a, b] X (,,, t,,11] and are
discontinuous in time at time ¢, one can write a space-time variational formulation
for the governing equation in (1) as follows

(U1 Wnt1) p2(apy+ < Vo, we > |25 — < (u, we + Vo, ~ Kw]) > (3)

= (unawh}')Lz(a,b)'l_ < (fa w) >,

where (un,wn)r2(4p) = fabu(:c,tn)w(m, to)dz, < Ue,we >= ff’:’“ uw(e, t)w(e, t)dt for
c=aorb, < (u,w) >=< (U, W)2(ap) >, and wy = limy_¢, ¢, w(z,t).

It is difficult to find the test functions w to satisfy w; + Vw, — Kw = 0 since one
cannot track the characteristics exactly, in general. Nevertheless, the test functions
wj, which are defined by w;(X(6;,tn11),0) = wi(@, tppr)e™KBtnt1)Int1=0) for
0 € [tn,tot1] and i = 0,1,...,1, and by wi(X(8;b,t),8) = w;(b,t)e” KED{E=0) for
O€lty,tjand i =I,I+1,...,]+IC+1, satisfy w; + Vw, — Kw = 0 approximately.
Substituting w; for w in (3), one can rewrite (3) as follows

(un+1,wn+1)L2(a’b)+ < Voup, wp > — < (u, [we + Vg — Kuw)) >

(4)

. 3
= (‘I'Slluz, Wnt1)r2(a,6)+ < UPuz wy >+ frit, Wnt1) L2 (0

+ < \Il§,4)fb7wb >+ < Vagawa > +R(f1w)’

Here u} = u(z*,t,) in (-,-) with 2* = X(tn; %, tny1) and u), = u(b* (t),t,,) in
<+ > with b*(2) = X (ts; b,t). R(f,w) is a truncation-error term resulting from the
application of the backward Euler quadrature to the last term on the right-hand side of

Equation (4). %), =1+ 0(A#), ¥ = V(b,)(1 + O(At)), T), = At(1+O(At)),
‘I’,(,4) = At(1 + O(At)) are Jacobian-related factors whose exact forms are omitted
here.

In the numerical scheme the trial functions U are chosen to be piecewise-linear
functions at the time ¢,,,; and at the outflow boundary. Note that w;:+Vwi; —Kw = 0
approximately, the term < (u, [w; + Vw, — Kw]) > should be small and dropping it
introduces negligible errors. Replacing u by U in (4) and dropping the last terms
on both the left-hand and right-hand sides of Equation (4), one obtains an ELLAM
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scheme at 1 = 1,2,...,I + IC as follows

(Unt1, Win+1)r2(ab)+ < VoUp, Wip >

(5)

= (‘I’Sj)LlUia’lﬂi.n+1)L2(a,b)+ < U0z, Wiy > AU Frtts Wit 1) L2 (at)

+ < ‘111(,4)fba'¢f7ib >+ < Vug, Wiq >,

where w; = w; fori = 1,2,..., I+ I1C—1, W = wo+wy, Wi+1c = WitIc T Wr+I1c+1-
Since U(a,tyt1) = g{tnt1) is known, no equation is needed at ¢ = 0. Thus, fori = 1in
Equation (5) we use 10; = w; + wq instead of wy on [a, z1]. Similarly, because U (b, ty,)
is known from the computations at the previous time ¢, we choose Wy instead of
wrirc on [te,tnyyryic] in Equation (5) for ¢ = I 4+ IC.

With the given boundary condition at the inflow boundary z = a and the known
solution at the time t,, one can solve Equation (5) for the ELLAM approximation
U at the time t,,; and at the outflow boundary = = b. The scheme has a well-
conditioned, symmetric and positive definite (tridiagonal in one dimension) coefficient
matrix without any artificial boundary conditions added.

3 A Space-Time Local Refinement and Domain Decomposition
Algorithm

Based on the scheme (5) we present a noniterative, nonoverlapping, domain
decomposition and space-time local refinement method for problem (1) with interfaces
at d; (1=1,2,...,L —1): Partition the time interval [0, T} into K intervals [T—1,Tk]
with0=Ty<T1 < ... <Tp_1 <Tp=T.

(1) With the given initial and boundary conditions in (1), apply Equation
(5) to solve problem (1) over the space-time domain [a,d;] x [0,71].
The solution U(x,t) over this domain defines the left-limit U(d;~,) for
t€[0,71] and U(z,T1) for z € [a,d;].

(2) When V(z,t) is discontinuous at & = dy, U is discontinuous at the same
location too. The continuity condition (2) yields the right-limit U(d;+,?)
for ¢t € [0,T1]. With U(d;+,t) as the inflow boundary condition and the
initial condition in (1), one applies Equation (5) to solve problem (1) over
the domain [dy, ds] x [0, T3], except that the g(t) in the last term on the
right-hand side of (5) should be replaced by U(dy+,1).

(3) With U(z,T1) z € [a,d;] as the initial condition and the inflow boundary
condition in (1), apply Equation (5) to solve problem (1) over [a,d;] X
[T}, Ty).

(4) Next one applies Equation (5) to solve problem (1) over [a,d;] x [Ty, T3],
[d1,ds] x [T1,Tz], and [da,ds] x [Tp,T1]- Repeating this process one can
obtain the solution U(x,t) over the global domain [a,b] x [0, T].
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It is easy to see that steps 2 and 3 can be performed in parallel. In general, one can
solve problem (1) over [a, d1] X [Tk—_1, Ti], [d1, d2] % [Te—2, Tie—1, - - -, [dr—1, d&] X [To, T3],
in parallel. Thus, this algorithm actually defines a characteristic-based, noniterative,
nonoverlapping, parallelized, domain decomposition algorithm. Secondly, note that
this algorithm is well-defined independent of the space-time grids defined on each
subdomain [d; 1, dj] x [T} _1, Tx]. When the solution has a sharp front within [d;_.;, dj] x
[Tk—1,T%] and is smooth outside, one can use refined space-time grids only within this
subdomain and coarse grids outside. Thus, this algorithm also gives a space-time
local refinement method, which can resolve the sharp front accurately with reasonable
computational cost.

4 Conforming/Nonconforming Matching of Interfacial Nodes

In this section we briefly discuss the matching of interfacial nodes. At the current time
slab [d;_1,di] X [tn,tny1], the following three different partitions of interfaces can be
used:

PARTITION 1: One can partition the interface {d;} X [tn,tn+1] based on the
magnitude of the Courant number Cup, = VAt/Az with Vi = maxseps, ¢, V(b 1).
In this case one defines the nodes t, ; = t,41 — (i — DAL/Cup = tpiq — (i — I)Az/V
fori=1I,I+1,...,1+IC and t, 141c+1 = tn, where IC is the integer part of Cuy if
Cuy, is not an integer and IC' = Cuy, — 1 otherwise [CRHE90].

PARTITION 2: One can define a uniform partition at the interface {d;} X [tn, tn+1]
based on the Courant number Cuy, which is essentially the same as Partition 1.

Notice that partition 1 or 2 defines U{d;—,t) (¢ € [tn,tn+1]) to be a piecewise-linear
function on the nodes t, =ty 141041 < tn1+1C < -+ < tn,141 < tn,1 = tpy1. On the
other hand, the last term on the right-hand side of (5) actually defines the integral of
U{di+, t)wz on the interval [t} , ., ; ;] where £} ; is given by a = Xt i, tny1)
fori=0,1,...,1 C’ and t}, 1o, 11 = tn with IC, bemg the integer part of (¢ —a)/Az.
In other words, ; (i = 0,1,...,IC,) is the time such that the approximate
characteristic extending backward from z; at time t**' meets the inflow boundary
* = a at t},,. Since the t;; (i = 0,1,.. .,IC,) at the interface {di} X [tn,tn41]
are different from tny G=1,1+1,...,1 + IC), in general, one has to interpolate
U(di—,t) on a shifted grid t, =t 1041 <1 ;0 <. <ip3 <tno=tn41 when one
used Equation (5) to solve problem (1) on [d;, dij1] X [tn, tn+1]- Thus, Partition 1 or
2 defines a nonconforming matching.

PARTITION 3: We define the nodes ¢, r4; from the subdomain ldi, diy1] X [tr, tnta]
to be equal to ¢ , from the subdomain [d;—1,di] X [ts, tnt1]- When we use Equation
(5) to solve proble,m (1) over [di—1,d1] X [tn, tnt1], We obtain U(d;—,t) defined on the
grid ¢, = ot <tngc <--- < by < tno = tat1 which is the same grids over
which we need to compute the last mtegral on the right-hand side of (5). Thus, this
partition gives a conforming matching.
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5 Numerical Example

In this section we apply Equation (5) to solve problem (1) with discontinuous
coefficients. The data are given as follows: the domain D; = (~1,0) and Dy = (0,1),
the velocity Vi(z) = 2 on Dy and Va(z) = 1 on Da, g(t) = 0.0, the initial condition
ug(z) = 1000(z + 0.15)*(x + 0.85)* for x € (—0.85, —0.15) and 0 otherwise.

Because of the discontinuity of V(z,t) at x = 0, the interface condition (2) now
reduces to 2u(0—,t) = u(0+,¢t) for t € [0,T]. It is easy to see that the analytical
solution of this problem is given by u(z,t) = wug(z — 2t) for z € (—1,0) and
u(z,t) = 2ug(2(z —1)) for z € (0, 1). In Figures 1-2 the numerical solutions are plotted
against the analytical ones for time £ = 0.1, 0.25 and 0.8, respectively. In Figure 1 we
used coarser grids on D; and finer grids on Ds. The Courant number is 8. One can
see that the numerical solutions have been quite accurate. Similar conclusions can be
drawn in Figure 2. Our other experiments, which are omitted here, show that when
the time step At is relatively large, Partition 3 produces a slightly better solution
than Partitions 1 and 2 (about 20 % less errors). On the other hand, Partitions 1 and
2 are more feasible and convenient to implement especially for nonlinear problems or
multi-dimensional problems.
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Figure 1 At = 0.1, Az; = 1/40, Az = 1/100, Partition 3 used.
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Figure 2 A¢ =0.05, Az; = 1/50, Azo = 1/50, Partition 1 used.





