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1 Introduction

For simplicity we consider the following model convection-diffusion equation

—V - (eVu~-fu)+ou=f in Q, (L.1)
u=g on T =99, ’

where () is an open bounded domain on the plane, and a, f, g are given functions on
Q and T, § is a vector-valued function, and ¢ is a 2 x 2 matrix which is symmetric
and positive definite.

In this paper, we assume that the problem (1.1) is convection-dominated so that the
equation is of hyperbolic type and the solution possesses boundary and interior layers.
Such problems are known to be difficult to discretize and to implement in practical
computation.

Our objective here is to outline a stable finite element scheme and its parallel
implementation by using domain decomposition techniques for (1.1). The finite
element method is based on the standard discontinuous Galerkin procedure [10]
combined with mixed finite element technique. The discretization scheme and some
error estimates were discussed in [9]. We will report some new error estimates that
have been derived in [12]. Our parallel domain decomposition algorithm [13] and its
convergence analysis follow the work of Després, Joly, Robert [6] and Douglas, Paes
Leme, Roberts, Wang [7] for the standard mixed finite element method.

The reader is referred to [12] and [13] for details of this research.
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2 A Mixed Discontinuous Galerkin Scheme

Without loss of generality, assume that the matrix-valued function ¢ is a (small)
constant. Then a mixed formulation for (1.1) can be obtained by introducing a variable:

7= —e?Vu.
The problem (1.1) is equivalent to seeking (g,u) with u = g on I such that

F+eiVu=0 in Q,

V() +V-(Bu)+ou=f inQ. (1)

For each real parameter h > 0, let 7; be a finite element partition of § consisting
of triangles or quadrilaterals e with diameters bounded by A. To derive a variational
form for (2.1), we introduce the following functional spaces:

V = {ve [L2)]*, V-7 e L2(Q)},
W = {w € L%(Q),w|. € H'(e), Ve € Tn}.

Also introduce the following linear and bilinear forms:

A(g,7) = (¢,7),q,T €V,
B(@w) =£*(V-§w),§€ V,weW,

D(u,w) = Z (- /uﬁ Vu)+/a uy [wlfi - Bds) + (o, w)u,w € W,

e€ Th €

9(?) = —5%/ g¥-Rdsi € V,g € HI(D),
r

where (-,-) is the standard inner product in L2(Q) or [Lz(ﬂ)]2 as appropriate, 7 is
the outward normal direction on Jde,

de_ = {lede, -fl; <0},

and
o
b

wl=wy —w_, wi(@)= lim w(&+16)
t—0+

-3

w_(Z) = tEIél_’w(if +10)

With the above notation, a weak form for (2.1) which seeks (§,u) € V x W such
that
A(q,9) - B(0,u) =g(¥), VFEV,
B(q,w) + D(u,w) = (f,w), VweW.
It is not hard to verify that if the solution of (1.1) is smooth enough, then the problem
(2.1) is equivalent to (2.2).

The Ritz-Galerkin procedure can be applied to yield a mixed discontinuous Galerkin
method for (1.1). To this end, let Vi, x W, C V x W be appropriately defined
finite element spaces associated with 7;. Then the Ritz-Galerkin approximation is
the solution of the following linear system:

(2.2)

A(q’haﬁ) - B(ﬁa u’h) = 9(17 y V7 e Vh,

B(tfh,w) +D(uh,w) = (f,w), Yw € Wh. (23)
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Now we comment briefly on the construction of V, x Wj,. Since there is no continuity
requirement for functions in W}, it is natural to include in W}, piecewise polynomials
only. Consequently, the standard mixed finite element spaces are good candidates
for V}, in order to provide a stable and accurate approximation by using (2.3). If the
diffusion effect is negligible, one could replace V}, by continuous piecewise polynomials.
For more information on the construction of Vj x Wy, we refer to [5], {11], [4], [8].
Other possibilities can be found in [12].

If the mixed finite element spaces are employed in (2.3), then the following global
error estimates can be derived [12]:

Theorem 2.1 Let (q,u) be the unique solution of (2.2), and (Gh,ur) be the finite
element approzimation by using the Raviart-Thomas element of order i > 0. Assume
that € V, a € L*®(2), and o+ 3V - > 0p > 0. Then,

17— @l + llu = wall < CHH (dllier + B Eluflig), (24)

where || - || denotes the L*-norm and || - ||i+1 stands for the norm in H*(Q).

Interior error estimates are also available for the mixed discontinuous Galerkin
method. Intuitively speaking, if the solution u does not change rapidly in ) except in
a small region of boundary layers, then one would have the following error estimate:

llu — unllz2(py < C(/2h712 4 HM/?),

where D C ) is any subregion excluding the boundary layer of u and C' is a constant
independent of ¢.

3 A Parallel Iterative Procedure

Our iterative algorithm can be considered as a modification of the parallel procedure
studied in [7]. In’ this section, we outline the algorithm as well as some convergent
results. Details of the analysis can be found in [13].

Let {Q;,7 =1,..., M} be a partition of &

M
a=J9;: QLN =9, j#k
=1
Assume that 8Q;,j = 1,..., M, is Lipschitz and that ; is star-shaped. Set
r; =T Naoqy, ij=ij=6Qjﬂaﬂk.

Let us consider decomposition of (2.1) or (2.2) over {{;}. In addition to requiring
{9;,u;},7 =1,..., M, to satisfy

qj—l-e%Vuj =0, in €y,
€2V -q; + V- (Buy) +ou; = f, in Qj, (3.1)
Uj =g, on Fj,
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it is necessary to impose the consistency conditions

U; = Up, z € Ty, (3.2)
qj nj+as-n, =0, z€Tl,
where n; is the unit outward normal to ;. It is convenient to replace (3.2) by the
Robin boundary condition

—nq; - nj +u1 =nNqx - g +ug, zTE€ ij C aﬂjy (33)
~Nqx "N +Up =NY; "ND; +U;, T E ij C 0y,

where 7 is a positive (normally chosen to be a constant) function on | JTjx. Following
an idea in [6] and [7], we can define a parallel iterative procedure for (3.1) by
introducing Lagrange multipliers on the edges {T'jx}.

Let V5, x W}, be a mixed finite element space over {{1;}; any of the usual choices is
acceptable, see [5], [11], [4], [3], [8]. Each of these spaces defined through local spaces
V; x W; = V(Q;) x W(£;), and setting

V, = {veH(divQ) :Vle € Vj},
Wi = {w:wlp; € W;},
Ah = {)\ : }\lpjk c Pm(I‘,-k) = Ajk,I‘,-k 75 @},

where m is the order of polynomial on I'jx such that q; - njlr,, € Ajx. Then the
hybridized mixed discontinuous Galerkin method is given by seeking

{q; e Vju; € Wi Ajp€Ajp 1 g =1,...,M;k=1,...,M}
such that for all (v,w, ) € V; x W x Ajpg,
(qj7v)9j - 6%(V . Vvu,'i)ﬂj + 6% Z()\jk’v ) nj)ij = _(":%‘7(97V : nj)Fj’
k

e} (V - qj, w)a, + d(uj, w)q,

= (f,w)a; — (9,0 - fwydr,_ — Z("’k—’nj By, (3.4)
k
(4,95 - 1; + qx - ng)ry, =0.
Substitute u; and uy in (3.3) by A;x and Mg, so that
gtV By)rsn = (1005 -1 + e 1) + Mg,V - 05)r (3.5)

Then, the iterative process can be defined as follows: let, for all j and &,
a4 €Vj, ujeW;, A €Ay

arbitrarily. (A}, = A}; seems natural) and then compute {af,uf, A} € VixWixAje
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recursively as the solution of the equations
1 1
(q;z’ V)Qj —e€? (V g U;L)QJ +e2 Z(UQ? LA nj)rjk
k

1 - - 1
= —¢? Z(nqg Liong + Aki Lv. ny)r;, —€2(g,v-n;)r,,¥ve 'V,
k

€5 (V- q7,w)a; +d(u}, w)e; (3.6)
=(f, w)Qj =~ {9, n;- Ew+)rj— - Z<u;::1ﬁnj . Ew+)th~:Vw e W;,
k

My =n(a} -n; +ap " me) + A

Note that in (3.6), the first and the second equations are independent of A%, Thus,
7 can be evaluated by the third equation after the determination of q} and u}.
The following convergence result has been obtained for the above algorithm.

Theorem 3.1. If o + %V . ﬁ > 0 holds, then the iterate solution {q;‘,u?,/\;-‘k} €
V; x W; x A; of (3.6) converges to the solution {q;,u;, A\jx} of the global hybridized
mized discontinuous Galerkin procedure (3.4) in the following senses:

af +qj=q*lo, in L),
u;‘ > U; = ’u,*,gj n LZ(QJ'),
A and AE = A in LA(Tye),

where {q*,u*} € Vj, x W}, is the solution of the global mized discontinuous Galerkin

method (2.3).
To estimate the rate of convergence, let T,, be the affine mapping from V,, x W, x A,

to itself such that, for any (s, p,8) € VaxWaXAg, (v, e, 1) = T4,4(s, p, 8) is the solution
of the following linear system:

(xssV)a; — €} (V- v,e5)a, + €2 3 (- n5,v my)r,
k
= —e} 3 sk mi + 04, v - 1y)ry ~ €2 g, v o my)ry Vv eV,
! 3.7
6% (v- rJ"w)Qj -+ d(eﬁw)ﬂj . ( )
= (f’w)ﬂl - <g’nj 'ﬂw+>ri- - Z(pk—’nj 'ﬂw+>1‘5k— Yuw € Wy,
k

Mik = n(rj ‘n; +sg- n) + ;.

The convergence rate of the iterative scheme can be characterized by the spectral
radius of the linear operator Tp o [7].

Theorem 3.2. Let p(Tp) be the spectral radius of To = Too. Assume that
1_ =

then
p(To) <1.
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Thus, the iterative procedure (3.6) is convergent.

Theorem 3.3 Assume that there erists an ag > 0 such that
1 -
o+ EV -8 2 ag.

Assume that the partition {Q;} is quasiregular, and the parameter n in the iterative
procedure (3.6) satisfies n = \/ h(Cie~t + pagt). Then,

Ch

=7,
\/Cih+ ehpagt + agt|vy[~2

where p = max|0;]/|;], v is the eigenvalue of To. The iteration (3.6) converges with
i

p(To) £ 1~

an error in the n*? iteration bounded asymptotically by O(7F).
0

The following are some particular cases of the domain decomposition.

Case One: Assume the triangulation ; of Q) into elements to be quasiregular and
that the subdomains in the domain decomposition to coincide with {€2;}. In addition,
assume ap = O(1). Then, by choosing the parameter 1) = O(e™ %), it follows that (3.6)
converges with rate bounded by 9 =1 — Ch.

Case Two: Let us consider the convection-diffusion problem with “good” convective
direction in the sense that any streamline passes through only a finite number
of subdomains. Also assume that ap = O(1) and |9;] = O(1). Then, choosing
n= O(e‘%h%), leads to the estimate v = 1 — Cvh.

Case Three: Suppose € < b1 with w > 0. If the convective direction B' is “good”,
and ap = O(1), |Q;] = O(1). By choosing = O(e~%h), one arrives at the following
estimate

Ch _{ 1-Ch3*, 0<w<l;
l-cle<l), w>1,

=] - —— =
Yo ,———-h2+6

which shows a uniform convergence for the domain decomposition algorithm when
€ < h2
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