Preconditioners for Spectral and
Mortar Finite Element Methods

Olof B. Widlund !

1 Imtroduction

Domain decomposition methods have been developed quite systematically for
conforming lower order finite element approximations of elliptic problems. Less
attention has been paid to the large, often very ill-conditioned, linear algebraic systems
of equations that arise in discretizations based on spectral elements, p—version finite
elements, and mortar finite element methods.

In this paper, a brief review is given of some of our relatively recent work on domain
decomposition methods for spectral elements, carried out jointly with Luca Pavarino,
and more recent work on mortar elements which is joint with Yves Achdou, Mario
Casarin, and Yvon Maday.

The iterative substructuring (Schur complement) algorithms form a main family of
domain decomposition methods for elliptic problems. Like other domain decomposition
methods, they are preconditioned conjugate gradient methods. The region 2 of
the given elliptic problem is subdivided into non-overlapping subregions {2; and
a discretization is introduced. In the pure form of the iterative substructuring
algorithms, the interior variables of all the subregions are first eliminated using a
direct method. A preconditioner, for the remaining, Schur complement, system of
linear algebraic equations, is then constructed from solvers of certain local problems
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and, in addition, a solver of a coarse, global problem similar to that of the coarsest level
of a multigrid algorithm. The coarse problem is often the key to good performance,
and it can be quite exotic; cf. Widlund [Wid94]. Very large systems of linear algebraic
equations, arising when elliptic problems are discretized by finite elements, finite
differences, or spectral methods, have been solved successfully by such iterative
methods. A number of systematic experimental studies have been carried out with
domain decomposition algorithms for both lower and higher order finite elements.
Early experimental work for quite large lower order finite element problems is reported
in Smith [Smi93]. Very large spectral problems have been solved, using similar
preconditioners, by Paul Fischer and Einar Regnquist; see, e.g., [FR94]. For pioneering
work on p—version finite elements, sce Mandel [Man90, Man94]. We note that problems
based on higher order discretizations are often exceptionally ill-conditioned. Therefore
the challenge to construct good preconditioners is greater than for lower order
methods.

A theory for h—version finite element methods in three dimensions is summarized
in Dryja, Smith, and Widlund [DSW94]; see also Dryja and Widlund [DW95] for the
underlying general Schwarz theory and an analysis of Neumann-Neumann methods.
The author has also completed several papers on spectral elements in joint work
with Luca Pavarino; see, in particular, [PW94b, PW94a], and section 4 of this paper.
For further work on domain decomposition methods for spectral elements, including
Schwarz methods with overlap and iterative substructuring algorithms for Stokes and
Navier-Stokes equations, see the recent doctoral dissertation of Mario Casarin [Cas96].

Mortar elements form an interesting class of nonconforming finite elements;
see section 5 of this paper for a brief description. Several studies on domain
decomposition methods for mortar finite elements have already been completed by
Achdou, Kuznetsov, [AK95], and together with Pironneau, [AKP95], Dryja [Dry96],
and LeTallec and Sassi [LTS93]. An alternative algorithm, a hierarchical basis domain
decomposition method has been developed by the author for problems in the plane in
joint work with Mario Casarin; see [CW95] and section 6 of this paper. There is also an
ongoing joint study, with Yves Achdou and Yvon Maday, [AMW96b, AMW96a], also
for plane elliptic problems. Here, in addition, we will describe an algorithm, developed
with Yvon Maday, [MW96] for problems in three dimensions.

We recall that the number of iterations required to decrease the energy norm of the
error in a conjugate gradient iteration, by a fixed factor, is proportional to \/m
Here « is the spectral condition number, A the coefficient matrix of the original system.
and B that of the preconditioner. Our central goals are the design of methods with
small condition numbers and the development of tools for estimating upper and lower
bounds for the spectrum of B~'A. All good results in our theory show that the
condition number of the iteration operator is independent of the number of subregions
f;md. grows only polylogarithmically with the number of degrees of freedom of an
1n'dlvidua,1 local problem; the bounds are proportional to (1+log(H/h))9 or (1+logp)¥s
with ga small i‘nteger. Here, for the h—~version, H and h are the diameters of a typiéal
subreglox} and its .elements, respectively. For the spectral case, p is the degree of the
polynomials used in each subregion of a spectral approximation.
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2 The elliptic problem and spectral finite elements

We begin by formulating a linear, elliptic model problem on a bounded domain
in R3, with a Lipschitz continuous boundary 012, as a classical calculus of variation
problem: Find u € V such that

a(u,v)z/ﬂk(x)Vu~Vvdx = fv),Vve V. (1)

The coefficient £(x) > 0 can be discontinuous. For simplicity, let k(x) = k;, a constant,
in each subregion ;. We impose a homogeneous Dirichlet condition on a nonempty
set 0Qp C 89; this condition is incorporated into the definition of the space V. A
Neumann boundary condition is given on 9Qy = 92\ 8 p; inhomogeneous Neumann
boundary data are incorporated into the right hand side of (1).

Here, we only consider one variant of the spectral finite element methods. We assume
that Q is the union of subregions €2; which are cubes or images of a reference cube
under reasonable smooth mappings. These subregions serve as elements of the spectral
element discretization. We use conforming @, elements and replace the integrals
of the bilinear form of (1), element by element, by Gauss-Lobatto-Legendre (GLL)
quadrature. The resulting finite element space is denoted by V? C V and the new
bilinear form, ag(-,-), is given by,

ag(u,v) = (kVu, Vo) = Zki(vuy V)., Yu,v € VP(Q).

Here, on the reference cube Q..; = [—1,1]*, we use the inner product
P P P
(4,0)Q. 00 = DD > (G &, E0)v(Ein &5 Ex)Pipiprs
=0 j=0 k=0

where the ¢&; and the p; are the GLL nodes and weights, respectively.
It is known that ellipticity is preserved; cf. [BM92]. A convenient nodal basis on the

reference cube is provided by
lk(a‘)l.l(y)l’»(z)v 0<4,5,k<p

The {; (x) are the basic Lagrange interpolating polynomials of degree p defined by
(&) = 65,0 < 4,j < p; see further [BM92], where the special structure of the
stiffness matrix is also discussed. We note that this set of basis functions naturally
divides into interior, face, edge, and vertex functions.

The finite element problem is thus obtained by replacing, in (1), the bilinear form
a(-,+) by ag(+,-) and by restricting u and v to the space V¥. Numerical quadrature
can also be used to replace the right hand side of (1).

The finite element variational problem is turned into a linear system of algebraic
equations, Kz = b, where K is the stiffness matrix and b the load vector. As a direct
consequence of the ellipticity and symmetry of the bilinear form, we have K7 = K > 0.
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3 Block-Jacobi and related domain decomposition methods

There are a number of ways of introducing domain decomposition methods; here
we select the one we believe to be the simplest. We work in a framework of block-
Jacobi/conjugate gradient methods. The stiffness matrix K is then preconditioned by
a matrix Ky, which is the direct sum of diagonal blocks of K. Each block corresponds
to a set of degrees of freedom with corresponding basis elements, which span a subspace
V;. The space V? is a direct sum of the subspaces V;,i = 0,---, N. A good choice of
the subspaces, after a suitable change of basis in V7, is the key to success.
Associated with each subspace V; is an orthogonal projection P; onto V; defined by

ag(Pu,v) = ag(u,v), YweV;,, ueVP,
or an operator T;, defined in terms of an alternative bilinear form @,(-,-),
ai(Tyu, v) = ag(u,v), Yo € Vi, ue VP

In simple cases, where a subspace V; corresponds to a group of variables associated
with adjacent mesh points, P; corresponds to the inverse of a diagonal block of K
embedded among zero blocks, times K. To obtain 7}, we can replace the inverse of the
designated matrix block by a preconditioner of a local problem associated with these
variables.

The global subspace can be chosen as the finite element problem of degree one,
ie. as V', or, more generally, as another suitable subspace with just one, or a few,
degrees of freedom for each element €; of the triangulation of Q. We have considered
the consequences of choosing V' as well as more exotic choices. Extra care has to be
taken if V! is selected; we refer to Pavarino and Widlund [PW95] for a discussion of
how it is possible to combine the use of V! and fast convergence.

The spectrum relevant to the iterative methods is that of the operator

N
T=>T.

i=0

The eigenvalues of K~1K;, and of 7!, can be shown to be the stationary values of
the Rayleigh quotient

N - N
s il WUy, Uy
—ﬁzl_o i, 1)! u = Z"‘"" u; € Vi,

a(u,u) i=0

Typically, the most challenging part, in work of this kind, is to provide an upper
l.Jo.und for this expression. An upper bound on afug, w;) /@ (ug, u;), Yu; € Vi, for each
t, is also required to obtain a lower bound of the eigenvalues of K 71[{. Jood bounds
can only be obtained by carefully selecting the subspaces V;, and the bilinear forms
@;(-,-), which together fully specify the iterative method. ’

Our.class of preconditioner can be extended to the case when the finite element
space is not a direct sum of subspaces that correspond to blocks of a block-Jacobi
splitting. The relevant operators T are still well defined for any set of subspaces V;.
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The basic formula, which is easy to prove, is then

N
a(T™ u,u) = WSS PIACTRAE

i=0
see Zhang [Zha91]. We note that if the subspaces V; do not form a direct sum, then
there is some freedom of choice in the representation of u at least for some elements of
V. This can be turned into a considerable advantage. We can, e.g., start with a direct
sum decomposition of the finite element space and then enrich some or all of the sub-
spaces, increasing their dimensions. This is often related to an increase of the overlap
of a decomposition of the given region 2 into subdomains. We can also strengthen a
preconditioner by adding additional subspaces, e.g., a coarse, global space.

There is an underlying general theory. We note that any block-Jacobi method can
be considered as a special additive Schwarz method where a direct sum decomposition
is used. There are also Gauss-Seidel-like, multiplicative, and several hybrid Schwarz
methods. The derivation of bounds for these families of algorithms, once bounds are
proven for the additive case, is by now completely routine; see, e.g., [DSW94, DW95].

4 A choice of subspaces for spectral elements in three dimensions

Our choice of subspaces is directly related to important geometric objects: interiors,
faces, edges, and vertices of the elements. We can merge edges and vertices, creating
wire baskels and we will describe a wire basket based global space Vp; see below. We
recall that the subspaces V; and the energy forms a;(-,-) define an iterative method
completely.

The subspaces and bilinear forms are defined as follows:

We use an interior space for each element: @, N Hg (€;). Exact solvers are used for
these subspaces.

There is also a space for each face I';;, where fi]- =0;N ﬁj. The functions of this
space vanish on and outside 9€);; = 9(Q; UT;; UQ;). Tt is crucial to have a good recipe
for the extension of the values on the designated face to the interior of the two relevant
elements. ‘The minimal energy (discrete harmonic) extension is used. This corresponds
to a change of basis and it greatly improves the performance of the resulting block-
Jacobi preconditioner. We note that the use of exact solvers for these subspaces can be
relatively expensive but that good alternatives have been developed; see, e.g., Casarin
[Cas96].

Our coarse space, of piecewise discrete harmonic functions, is associated with the
wire baskets of the elements. Any function in this space is defined fully by its values on
the wire basket. In our algorithm, we simply extend the values given on the boundary
of a face by assigning the average of the boundary values to all the interior GLL points
of the face and complete the extension by using discrete harmonic functions in the
interior of the subregions. A simple bilinear form, defined by

ao(u,u) = C(1+logp) Zky i?if Hu ~ CiHQLQ(W,.)a

is used leading to a special linear system of algebraic equations with one degree of
freedom per element, c;, and a larger subsystem with a diagonal matrix.
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Our method is closely modeled on an algorithm developed for lower order elements
by Barry Smith; see [Smi91, Smi93]. The following result is established in [PW94a).

Theorem 1
K(K;'K) < C(1+ logp)*.

Here C is a constant, which is independent of p, the values of the ki, as well as the
number of subregions.

Our paper also contains a strict numerical upper bound for the condition number
of the method as a function of p. There is also a second, quite different proof due to
Mario Casarin, see [Cas95a, Cas95b, Cas96]. Similar bounds hold for a number of other
algorithms. We also note that if V! is used as the coarse space, and it is combined
with carefully chosen local spaces, then the same type of result holds provided that the
coefficient function k(z) is quasi-monotone; see Pavarino and Widlund [PW95]. For
related work on multigrid methods and a definition of quasi-monotonicity, see Dryja,
Sarkis, and Widlund [DSW96].

5 Mortar finite elements

We give a brief description of the mortar elements first introduced by Christine
Bernardi, Yvon Maday, and Anthony Patera in [BMP94]. We will focus exclusively
on the second generation of these methods; see Ben Belgacem and Maday [BB93.
BBM93b]. We confine our study to the case of Poisson’s equation, ie. k; = 1, Vi.
The mortar elements have a number of interesting features. They are nonconforming
finite element methods where the partitioning of the region 2 into subregions (2; is not
necessarily geometrically conforming. Thus, in three dimensions, vertices and edges of
one subregion can intersect the interior of edges and/or faces of its neighbors: in two
dimensions vertices can intersect edges of neighboring subregions. In each subregion,
we are free to choose a standard finite element or spectral element method without
much regard to its neighbors. Even if the subregions geometrically conform, the finite
element meshes need not. In the spectral case, we can use polynomial spaces of different
order in different subregions and we can also mix finite elements and spectral elements.
The mortar element functions are, generally, discontinuous across the interface

I'=UL a0; \ 09.

betwee}rl the subregions. This interface defines the partition of the region into
sgl?reglons, and it can sometimes serve as a coarse finite element mesh. The original
bilinear form a(-,-) must now be replaced by a bilinear form a'' (-, -}, which corresponds

to a broken norm. It is defined as the sum of contributions from the individual
subregions:

GF(Uh,Uh) = Zagi (un,vn). (2)

Qur analysis only involves arguments about individual subregions and their next
neighbors. The subregions are assumed to be shape regular and all neighboring
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subregions to have diameters of comparable size. However, there is no need to assume
that all subregions have comparable diameters.

In the rest of this section, we will focus on piecewise linear finite elements and on
two dimensions. To simplify our discussion, we also assume that all of the subregions
are triangular (or quadrilateral) and that the triangulation of each subregion is quasi-
uniform and that it is obtained by successive refinements of the subregions; cf., e.g.,
[Yse86]. This, in particular, will be the framework for the preconditioner discussed in
the next section. We denote the diameter of the subregion 2; by H;, and the smallest
diameter of any of its elements by h;. Our results depend only on the minimal angle
of the overall triangulation, and ¢, the maximum of the number of refinement levels
£(3) of the subregions ;.

Thus, each §2; is subdivided by a nested family of standard conforming finite element
triangulations: 7¢ = {0}, 7¢, 74, . .. ,T;(z.). The quasi-uniform triangulation 7, , is
obtained from the next coarser triangulation, 7!, by subdividing each of its triangles
into four shape-regular, but not necessarily equal, triangles. We assume that the
triangles of level £ + 1 have diameters of an order approximately one half of the
diameter of those of level k.

A set of mortars {v,,}M_, is obtained by selecting open edges of the subregions
such that

T=UY_ F YmNYe =0 if m#£n.

Each edge is viewed as belonging to just one subregion. The other edges are the non-
mortars and are denoted by 6,,. The restrictions of the triangulations of the different
subregions to the mortars and nonmortars will typically not match; they are denoted
by 4", and 6”, respectively. Discontinuous mortar finite element functions have two dif-
ferent traces on the interface I' given by one-sided limits of finite element functions de-
fined on the individual subregions. The continuity across the interface of a conforming
finite element method is replaced by weak continuity across the individual nonmortars:

For each n, we define a space of test functions W"(§,) given by the restriction, to
the nonmortar 8, of the finite element space defined on the subregion of which &, is
an edge. The elements of W"(6,,) are subject to the further constraints that they are
constant in the first and last mesh intervals of 6.

The mortar projection m,, maps all of Ly(6,) onto the finite element space defined on
the nonmortar mesh §*. Given w € L(§,) and values u(™ (v, ) and u(™ (v,,) at the
two endpoints v, and vy, of §,, we determine the values of 7, (w, u(™ (vy, ), u™ (vn,))
on §! by

/ (0 = 7m0, 1™ (v, ), w™ (0, ))iods = 0, Vab € WH(8,0). (3)
bn

We note that only the values at the nodes interior to 8, are determined by this
condition; the values u(™(v,,) and u((v,,) are genuine degrees of freedom of the
finite element model.

We note that in the spectral case, a class of polynomials are used as test functions.
They are of a degree two less than the space of traces of the spectral element functions
given on the subregion of which 6, is an edge.

After these preparations, the mortar finite element space V" can now be fully
defined: The restriction of V" to Q;, V*(Q;), is a regular conforming finite element
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space as described above, and the jump across each nonmortar &, satisfies the set of
constraints given by (3).
The discrete problem is then: Find u € V' such that

a (u,v) = fr(v), Yve vh, (4)

where a’ (u, v) is defined in formula (2) and, similarly, f T'(v) is the sum of contributions
from the different subregions.

The rate of convergence of the solution of (4) to the solution of (1) is comparable
to that of a conforming discretization; cf. [BBM93a], [BMP94], and references therein
for theoretical and experimental results.

6 A preconditioner for geometrically conforming problems

We now consider the case of a geometrically conforming decomposition of a plane
region. We note that even though we will use a hierarchical basis in the design of our
preconditioner, we can primarily work with a nodal basis. We will use a nodal basis
of the mortar finite element space which is associated with all nodes interior to the
subregions and on 8Qy, all nodes interior to the mortars, and all nodes at all the
vertices of the subregions except those which fall on 0€2p.

Our algorithm, fully described and analyzed in [CW95], is based on earlier work
by Smith and Widlund [SW90]. We note that the analysis of the new algorithm is
considerably more intricate than that of the earlier paper in which only conforming
finite elements were considered.

At the expense of an exact solution of a homogeneous Dirichlet problem for each
subregion, we reduce problem (4) to that of finding the piecewise discrete harmonic
part of the solution. We recall that a finite element function u is discrete harmonic in
the subregion £; if

a''(u,v) =0 Yo e VP 0 HE(Q),

and that a discrete harmonic function provides the unique minimal energy extension
of finite element boundary data given on the boundary 8€);. This static condensation
step reduces the size of the discrete system. We note that it is not necessary to compute
a matrix representation of the related Schur complement. We only need matrix-vector
products with the Schur complement and these can be computed at the expense of
solving a Dirichlet problem for each subregion. After finding sufficiently accurate values
on I', the solution of (4) is then computed everywhere by solvingya finite element
problem for each subregion €2; with Dirichlet data given on 8¢, \ 0.

The values interior to each subregion correspond to a local subspace subspace of vh,
Tye other subspaces, which define our iterative substructuring method, are associated
with the vertices of the subregions, their edges, and there is also a simple global
subspace.

‘The set of vertices of the subregions associated with degrees of freedom of V", i.e.
those with values not given by the Dirichlet data on 8Qp, is denoted by V. Each
crosspoint of I" corresponds to several nodes of V and to one degree of freedom for
eac}‘l .of the subregions that meet at that point; these nodes are in the same geometrical
position, but are assigned to different subregions. In order to describe and analyze our
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algorithm, we define a special vertex basis function ¢v, for each of these degrees of
freedom and derive estimates of their norms; for these estimates, see [CW95].

For each vertex v, of V, let ¢, € V() be given the value 1 at vg, while all other
degrees of freedom on I' are set to zero. This completely defines ¢y, since the interior
nodal values on the nonmortars are given by the mortar projections, and those in the
interior of the €; by discrete harmonic extensions.

A one-dimensional vertex space is associated with each v, € V:

Ve = span of ¢,,.

We use the exact bilinear form a''(-,-) for these spaces.

Before we can introduce the edge subspaces, and their bilinear forms, of our iterative
method, we need to review some aspects of Yserentant’s hierarchical basis method; cf.
[Yse86]. We denote by AV}, k=0,1,...,£(3), the set of vertices of the triangles of ’];\ ,
by V}! the space of continuous functlons on §; that are linear in the triangles of T,
and by V* the most refined space V, 2(i)- All elements of all Vi vanish on 8Q; N dNp.

An interpolation operator I} : Vi — Vk_ , is defined by
Lu(z) = u(z) Yo € N
Following Yserentant [Yse86], we define a discrete norm, for any set A C Q;, by

o3
Mulllz =" Y. (Fu—T_u) ()P (5)

k=1 geNI\N}_ NA

Let W} be the image of I} — I} _|; this is the subspace of functions of V¢ that vanish
on N, 13;1‘ A hierarchical basis of V' can now be defined recursively. The hierarchical
basis of V§ is the standard finite element nodal basis restricted to the single triangle
;. It is clear that V! = V{_, + W}, k > 1. In each step, we augment the hierarchical
basis of Vi{_; by the level k nodal basis functions which span W} C.V}i. For a function
u represented in this basis, the discrete norm |||u|||% is simply the Euclidean norm of
its coeflicients and thus very easy to compute. Moreover, the transformation between
the standard nodal basis and the hierarchical basis is very fast and easy to implement;
see [SW90] and [Yse86]. This is especially true in the present context since the change
of basis can be carried out edge by edge, and in parallel.

A subspace V(m) = V,,, is now associated with each mortar +,,. The bilinear form
for this subspace is given by G;(m)(u,u) = ||[ul||?, . The elements of this local space
vanish on I'\ v,, and they are continued into the mterior of the subregions as discrete
harmonic functions.

Finally, a coarse space, which is conforming, is given by

Vo = {u € V"| u is linear on each ;}NV.

The bilinear form associated with V; is a'(-,-) which coincides with a(-,-) on this
subspace since the restriction of any element of V; to an edge is a linear function and
therefore satisfies the mortar jump condition.

The Schwarz framework provides a preconditioned equation Tu = b, in terms of
these spaces and bilinear forms, which has the same solution as (4). The main result
of [CW95] is the following theorem.
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Theorem 2 The condition number of T satisfies
&(T) < C(1+ 0>

In our relatively extensive numerical experiments, we have found that the rate of
convergence tends to be slightly better than for the algorithm described in [SWI0];
see [CW95].

7 Algorithms for geometrically nonconforming problems

We now give a short description of recent joint work with Yves Achdou and
Yvon Maday; see [AMW96b, AMW96a]. This work addresses more general classes
of problems; the partition of the two-dimensional region into subregions can be
geometrically non-conforming and spectral elements, as well as lower order finite
elements are considered. These algorithms are also iterative substructuring methods
with interior local subspaces and complementary families of subspaces with piecewise
discrete harmonic elements.

In these algorithms, the piecewise discrete harmonic part of the mortar element
space is partitioned into a direct sum of subspaces. The coarse space is of higher
dimension than that of the method described in the previous section, but it is also
well defined in the geometrically non-conforming case. One degree of freedom of the
coarse space is associated with each vertex. The corresponding basis function takes on
the value one at the designated vertex and vanishes at all the others. On each mortar
it is a linear function; the values at the nonmortars are, as always, determined by
those on the mortars and at the vertices. We note that in a geometrically conforming,
lower order finite element case, this coarse space is strictly contained in the sum of the
coarse space and the vertex spaces considered in the previous section. A main technical
challenge is to provide a sufficiently good bound on the energy norm of these basis
functions, and a general element of the coarse space. For the spectral case, several new
technical tools were required; see [AMW96a] for full details.

In addition, we use one subspace for each mortar ,,. Just as in the previous section,
an element in the space Vi(,,) = Vj,, is defined by its values in the interior of 4, and
it vanishes on I' \ 7y, The basic results of [AMW96b, AMW96a] concerns algorithms
which use exact solvers for these spaces, but a somewhat weaker result is also obtained
for a class of inexact solvers in the lower order finite element case.

The resulting polylogarithmic bounds, see [AMW96b, AMW96a], are quite similar
to those of the other sections of this paper.

8 An algorithm for mortar elements in three dimensions

_VVe now turn to a brief discussion of an iterative substructuring method for problems
in ibhree dimensions, which has been designed and analyzed jointly with Yvon Maday.
It is a face based method, a family of methods originating in the 1994 PhD thesis of
Marcus Sarkis; see [Sar94]. Our method is described by families of subspaces, which
fully define the domain decomposition method; in this algorithm the original bil'mear
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form, a%(-,-), and exact solvers are used for all the subspaces. Our results, so far, are
only for lower order finite elements, but we hope to extend them to the spectral case.

The coarse space has discrete harmonic basis functions, one for each mortar. A
basis function is equal to 1 at all of the interior mesh points of one mortar, ~,,, and
vanishes at all other nodes on the interface I' except those on the boundary of ~y,.
On each edge, and at each vertex, of -y,,, they take on positive constant values chosen
so that the basis functions form a partition of unity. The values on the nonmortars
are determined by insisting that the coarse space is a subspace of the original mortar
finite element space.

There is one interior space for each subregion with functions that vanish on, and
outside, the boundary of the subregion; this subspace is quite similar to an interior
subspace for a conforming finite element space.

For each mortar, there is a local space defined by arbitrary values at the interior
nodes of the mortar in question, with all other degrees of freedom on the interface T’
set to zero. This is a natural generalization of the local spaces discussed previously.

For each degree of freedom on the wire basket, there is a one-dimensional subspace
defined by one standard mortar basis function.

We note that these subspaces do not form a direct sum decomposition of the mortar
finite element space; the local spaces themselves span the entire space.

The following result will be established in a forthcoming joint paper with Maday.

Theorem 3 For the method described in this section,
#(T) < C(1+1log (H/R))?.

Here C is a constant, which is independent of H, h, as well as the number of subregions.
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