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1 Introduction

The finite element methods for solving nonlinear parabolic problems have been studied
by many authors; see, e.g., Douglas and Dupont [5], Wheeler [4], Luskin [3]. These
atthors have proposed various ways of solving the problems numerically and they
have established optimal order convergence rates of methods, such as the linearized
methods, the predictor-corrector methods, the extrapolation methods, the alternating
direction methods and different iterative methods [2}. Multigrid methods for solving
parabolic problems have been studied by some authors; see Hachbusch [14-15], Bank
and Dupont [12], Brandt and Greenwald [16] as well as Yu [13]. But these methods
are given mainly for linear parabolic equations. For nonlinear parabolic problems
Hachbusch and Brandt in {14], [15], [16] have given multigrid methods by using integral
differential equations and the frozen-r technique.

In this paper, we present a multigrid procedure for two-dimensional nonlinear
parabolic problems. The method is an extension of our earlier algorithm given in
[13] for linear parabolic problems. The iterative methods for solving the system of
nonlinear algebraic equations are avoided because the unknown function U, ,:H'G in the
nonlinear coefficient a(z,U7*?) and the right term f(z,t, U in the system of
nonlinear algebraic equations is replaced by I U,?ff in the multigrid procedure, where
I, denotes a intergrid transfer operator, § a weight function and Ug‘j’f the solutions
of the equation on level & — 1. We analyze the convergence of our algorithm and
the computational cost for N time steps. The computational cost is asymptotically
O(NN) where N is the dimension of the discrete finite element space and N is
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the number of time steps. In addition, the methods can be applied to more general
nonlinear parabolic problems.

2 Notations and preliminaries

We consider an initial value problem of the following nonlinear parabolic equation:

L Vlala,w)Vu) + F@tu), (@) € QX [0,T)
u(z,t) =0, (z,t) € O x [0,T), (2.1)
u(z,0) = ug(z), z € 09,

where  C R? is a convex polygonal domain, V is a gradient operator with respect
to £ = (w1,%3). Assume that the nonlinear coefficient a(z,p) satisfies the condition:
There are constants Ko, Ky > 0 such that

0 < Ko < a(z,u) < K1, V(z,p) € O x R (2.2)

a(z,p) and f(z,t,p) satisfy uniform Lipschitz conditions with respect to p, i.e., there
is a constant L > 0 such that

la(z,p1) — a(z,p2)| < Lip1 — po|, V(z,p) € Q x R,

|f($:tap1) - f(xatupz)l < L‘pl ""p2‘a V(:L',t,p) € Q X [01 T] X Rl' (23)

The variational form of problem (2.1) is : Find a continuously differentiable mapping
u(t) = u(z,t) : [0,T] — HE() such that

{ (Z—TZ,D) + afu; u,0) = (£(u),v), Yo € Hy(9), (24)

(u(z,0), v) = (UQ(.’B), v),

where a(u,v) = [;a(z,w)VuVudz, (f(u),v) = [, f(z,t,u)vdz. Assume that the
solution of problem (2.4) exists and is unique, and that the solution is smooth enough
for finite element analysis.

Let T'; be an initial mesh partition of domain Q (a triangulation or quadrilateral
partition). I’y (k > 1) is a partition obtained by connecting the midpoints of the edges
of elements in T'y—1. Then @ = Urer, and hg = $hi—1 where hy = max,cr, h;.

Let My (k > 1) be a finite element space of piecewise linear or quadratic functions
associated with the decompositions Ty, (k > 1). Then My_; C My, C HL(Q).

Let At > 0 be a time step size, ¢, =nAt (n=1,2,---,N), N = [—g—t] Let

tnig = %(1 + Otni1 + %(1 — 0)tn, U™ = U(w,ty,),
Ut = %(1 +0)untt 4 %(1 -ur,
FU™?) = f(z, tays, U™,

where 6 € [0,1].
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The finite element method for solving the variational problem (24) is: Find
{U}L, : J = My such that

At
(U(:E,O),’U) = (’LLO(.’E),’U), Vv e Mk-
(2.5) is the Crank-Nicolson scheme for # = 0. (2.5) is the fully implicit scheme for

6 = 1. For V@ € [0, 1], obviously, (2.5) is a system of nonlinear algebraic equations for
each time £; = jAL.

{ U ) a0, ) = (U™, ), (2:5)

3 Time-Dependent Full Multigrid Method

Let I, be an intergrid transfer operator, Iy : My_1 = My. I, is defined as the
piecewise linear function or as the average of values of the neighboring nodal points.
Let It be the conjugate operator of Ij or the restriction operator, It - My = My
which satisfies

(I,tc’u,k,'l)k_l) = (ug, Iyvgp-1), Yur € Mg, vp_1 € My_1. (3.1)

By the nested property of the finite element spaces, there exists a matrix By =
[b:5]N,_ x N, Such that I = Bf, It = B,[cl3].

If the solutions Uy™! and Ul ; on level k — 1 as well as UP on level k are known,
then we obtain a system of linearized algebraic equations as follows:

{ GEZ 2O o © a@uet?, U, ) = (FEU9),v)
At ’ k1Y > kY1 1Y) (3_2)
(u(z,0),v) = (uo(z),v), Yv € M.
In the following, we will give the time-dependent k level algorithm for solving the
system of linear algebraic equations (3.2). Assume that the solutions UfH! and U,

on level £ —1 and U} on level k are known. Then an initial approximate value of the
solution at (n + 1)th step time on the & level is taken as:

Ups' =Ug + Ly(UpH = Up.y). (3.3)
1) Pre-smoothing: Perform »; time smoothing iterations on level &:

Uphl = spupdt (3.4)

k,l/1

where S, is a smoothing operator, such as the Jacobi, Gauss-Seidel and the

preconditioned conjugate gradient iteration.
2) Coarse grid correction: The coarse grid equation is that Vv € My_;,

ﬁn—i—l —pr .
== ) + (U URY 0) = (FUR), o) + [(FUEE), Taw)

urtt - up 1 1 (39)
— (PP ) — a(LURH 5 (L + O)UL S + 5(1 - OUE, Iiw)],

(
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where 1 1
Upt{ = L+ U + 5(1L- U,

Let (A],?jll,p be the solution of (3.5) obtained by using p time iterations and

Urtl, = Urt! as the initial value. Then, the corrected value Ug L | of the iterative
solution of (3.4) on level k — 1 is defined as:

U,Z‘:SH = U,Zj,’ll + Iy (U,?;"f,p - U,?fll) (3.6)
3)Post-smoothing: Perform v, time smoothing iterations on level k:
1 - +1 )
U’z-l*l-1+V2+1 - S;;2 Ul?,ul-l-l . (37)

Thus we obtain an approximate solution of the equation (3.2) at the (n+ 1)’s time

step on level & as
Un—]-l — T
k - Yk,yitve+l”

The full multigrid scheme is defined as a recursive process over the mesh level k. If
we carry out the multigrid operation for each time step n, we get a time-dependent
full multigrid method.

The & level algorithm depends on the solution U T}, U, and Up. Therefore the
full multigrid iterative procedure depends on the solution UJ for k = 1,2,--- and U}
forn=1,2,.--,N.

The approximate solutions U (k = 1,2, - -) are determined by the following scheme.

1) For k=1, U = U7 is obtained by exactly solving equation (3.8).

2) For k > 1, U is obtained by using IzUp_; as the initial value of the multigrid
iterations. The exact solution UP(k = 1,2,- - -) satisfies the equation:

(UR, ) + a(uo; UR, v) = (f(uo(2)),v), Vv € M. (3.8)

The solution UP (n = 1,2,---,N) for the different § values will be considered in
the following two situations.
1) When 8 # 0, U**! is obtained by solving the following linear equation:

(Uln+1 ~Ur
At

forn=10,1,2,---,N - 1.
2) When 6 = 0, U} is obtained by applying the predictor and corrector twice. Let
U be a solution of the following predictor equation,

,0) + a(UP; U v) = (F(UP),v), Yv € My, (3.9)

Up - Up .
(F v +alUT; (U +U7)/2,0) = (F(U),0), Vv e My. (3.10)
Here Uy ? = (Uy + UP)/2, and U;* the solution of the following corrector equation,

U** - UD . .
(= At =5v) +a(l; %;(Ul** +U7)/2,0) = (f(Ul%)a'U)’ Yv € M;. (3.11)
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Set U**2 (Ur* +UD)/2. Then U} is obtained by the equation:
(Ul Up
At

The solution U**!(n = 1,2, ---, N —1) is obtained by applying the modified Crank-

Nicolson method.
Ut - vy

( At
where EUT = 3Up — LU

L o)+ a7 Uf v) = (F(UF?),0), Yo e M. (3.12)

,0) +a(BUMUME ) = ( F(EUD),v), Yv € My, (3.13)

4 Convergence Analysis
Let u be the solution of (2.1) which satisfies

€ LA(L2)n L' (HY).

(4.1)
'Then under the conditions (2.2) and (2.3), the finite element solution of (2.5) has the
following error estimate; see [3-5].

Lemma 1. Let u be the solution of (2.4). Let Un > 1) and U be the solutions
of (2.5) and (3.8), respectively. Then for 6 € [0,1], there are constants c*,79 > 0
independent of hy, {Uk } and At such that for At < 19, we have
c(h+At%),0=0
c(hi+At), 040

u€ L°°(H3), e L*(HYn L°°(H2), € L®(HY), Bt3

= Ol + el = Ol < { (42)
We will now prove that the finite element solution of the discrete equation (3.2) still
satisfies (4.2).
Lemma 2. Assume that we have obtained the finite element solutions Upt}, Up
on level k — 1 and U on level k and let UPT be the finite element solution of (3.2),
and let UPH! be the finite element solution of (2.5) on level k. Then, for 6 € [0, 1],
At ~ O(h2), there are constants c*, 7o > 0, independent of hy, {U2}, {UL} and At,
such that for At < 19, we have
s < {c*(h;i +A8%),6=0
Ho =\ e* (g + A1), 040
Applying Lemma 1, Lemma 2, and the triangle inequality, we obtain the following
convergence result for the finite element solution of the equation (3.2).
Theorem 1. Let u be the solution of (2.4) and satisfy conditions (2.2), (2.3) and
(4.1). Let UP(n > 2) be the solution of (3.2) and let UF,UY be the solutions of (3.9)-
(8.13) and (3.8), respectively. Then for § € [0,1] and At ~ O(h), there are the
constants c*, 79 > 0 independent of hy, {UL} and At such that for At < 19, we have
R+ A83), 0=0
c(hi + At), 640

|07 ~ Tpl|2 + | OF — (4.3)

I~ O lze + hullu — Ol < { (4.4
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Lemma 3. Assume that u satisfies conditions (2.2) (2.3) and (4.1). Let U] be the

solution of (3.2) on level k—1 and 0',?1'11 be the solutions of (3.5). Then for 8 € [0, 1],
and At ~ O(h3), we have

1022 — Ot llze + BellUpt) — O74 |

< Ry + [T+ = U e + A VO - U217,

k,V1 k,Vl

(4.5)

where .r12 9
" (hi_q1 + Lt?), 8=0,
Ry 1 =

ct(h2_, + At), 8 £0.
The constants c*, ¢ depend on Ko, K1, L, || V|| peo (1)

Let (7,?:11 » be an approximate solution of equation (3.5) obtained by p smoothing
iterations. Then there exists a constant 0 < v < 1 such that

A A 1 N N

10 = Up lze + 51+ O AR VU — Ugt )iz “8)

" _ 1 . . )

< PPITEH = TR + 51+ O A VO~ TEIa]

Therefore, the error of the coarse corrective solution of (3.6) satisfies the inequality

_ 1 _

17+ — Uptt, 13 + 51+ O ALKV TP+ — U, I

Sch+(1+7)R;_,

(4.7)

where
Ryy = {c*(h,i~1 + At?), =0,
c(hi_; + At), 8 40,
and
L= [P — U2, + -;-(1 + ) AtKo[[V(Optt — Uptt|2..

k,vq kv
Inequality (4.7) shows that the error of the coarse corrective solution is bounded by
the error of the solution of (3.2) and the error of the finite element solution of (3.5).
The smoothing iterative method of (3.2) satisfies the estimate:
_ 1 .
T+ = URSIze + 51+ O AtKo| V(T — URED Iz

kw1 k1

4.8)
v 77 1 F'7 (

< pSHNTET = TggHIEe + 51+ O) ALK V(T ~ UEh 7]
Thus by (4.7) and (4.8), the k level algorithm defined in (3.3)-(3.7) satisfies:
Theorem 2. Let U be the ezact solution of (3.2) and let U1 be the iterative

N . k,v1+ve+1
solution of the k level algorithm for (8.2). If there exists a con}st;:zt 0<vy<1such

that (4.6) holds for the level k — 1, then for vy + v, large enough, we have

_ 1 _
”Ul?—i-l - Ulz—!*l_ll—{-uz—l-luiz + .2—(1 -+ H)KOAt”v(U]?.'-l - U]:_:11+u2+1)l|2L2 )
(4.9

_ 1 _
SR HAITET - UESH I + S+ O Ko AV (T - UREY|12
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Theorem 3. Let u be the solution of (2.4) and satisfy conditions (2.2), (2.8) and
(4.1). Let UL, 1,11 be the k level iterative solution of (3.3)-(3.7) Then there are

constants c*, 79 > 0 independent of hy, and At such that if At ~ O(h%) and At < 7,

1
e = Ugs s lloe + hallu — ;Zj11+,,2+1“H3 < R;. (4.10)

Theorem 4. Assume that conditions (2.2), (2.8) and (4.1) hold. Then the approzimate
solution defined by multigrid algorithm satisfies the inequality:

lu(tnr1) = Upttlze + hellu(tnen) — U™l < R (4.11)

where the constant c* is independent of hy, At and {Ul'}.
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