Domain Decomposition Methods
for Unbounded Domains

Dehao Yu

1 Introduction

In many fields of scientific and engineering computing it is necessary to solve boundary
value problems of partial differential equations over unbounded domains. There the
standard techniques such as the finite element method will meet some difficulties, even
if they are very effective for bounded domains. The standard results for convergence
and error estimates of finite element methods are not valid on unbounded domains.
No doubt it would be feasible to restrict the domain within some bounded subdomain
simply, but the limit of finite element solutions is not necessarily the solution of original
problem. In order to get enough accuracy a very large bounded subdomain should be
taken, and a very high cost of computation must be paid. Then in the recent twenty
years many new methods for solving problems over unbounded domains, such as the
infinite element method [1, 11, 13], the boundary element method [2, 5, 7, 17], the
coupling method of finite elements and boundary elements [8, 12, 14}, the finite element
method with approximate conditions on an artificial boundary [3, 15, etc., have been
developed. However, each of them has its own advantages and disadvantages. We
believe that the coupling of the finite element method and the natural boundary
element method has some advantages over other coupling methods [14, 16]. All these
methods lead to complicated linear algebraic equations.

The domain decomposition methods are important computational techniques
developed rapidly in recent years [6, 10]. A domain is divided into subdomains, a
large, difficult and complicated problem is reduced to some small, easy and simple
subproblems. But up to now most of the theoretical analyses and algorithms are
only valid for bounded domains. In fact, it is more important to develop domain
decomposition method for unbounded domains. But when an unbounded domain is
divided into subdomains, there is still at feast one unbounded subdomain. In this case,
the finite element method by itself is not enough; the boundary reduction method,
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which is an effective measure for handling some problems on unbounded domains, will
be needed [9, 20].

There are many different ways to do the boundary reduction. The natural boundary
reduction suggested and developed by K. Feng and D. Yu is one of them, and it has
many distinctive advantages [4, 17]. Based on the natural boundary reduction, an
overlapping and a non-overlapping domain decomposition methods for unbounded
domains are discussed in this paper. Using one or two circles as artificial boundaries,
we can divided an unbounded domain with a closed boundary into non-overlapping
or overlapping subdomains. For the interior, small, bounded subdomain, the standard
finite element method can be used without any difficulty. In the exterior circular
subdomain, the results on the natural boundary reduction [17] can be applied directly.
Then a Schwarz alternating method and a Dirichlet-Neumann method for unbounded
domains are developed. Especially, for Poisson equation, some careful estimates of
contraction factors and convergence rates are given. The theoretical and numerical
results show that their convergences are very fast [19, 20].

In this paper, a harmonic boundary value problem is discussed in detail. Since
many results on the natural boundary reduction of the biharmonic, plane elasticity
and Stokes equations are also given in {17}, developing domain decomposition methods
for those problems over unbounded domains is also possible.

Steklov-Poincare operators play an important role in domain decomposition
methods. The relationship between Steklov-Poincare operators and natural integral

operators, and the inverse formulas of Steklov-Poincare operators are discussed in
[21].

2 Schwarz Alternating Method Based on Natural Boundary
Reduction

Let ) be an unbounded domain with a closed curve Iy as its boundary. The circles 'y
and I'; are in  and their radii B; > Ry > 0. Let §; be the bounded domain between
Ty and T'1, and Q, the unbounded domain outside I's. Then the original problem is
decomposed into two subproblems over {; and 2, with Q; N Qy # §. Taking some
initial boundary value on I';, e.g. zero, combining it with the given boundary condition
on Iy, we solve the problem over 4, get the value of solution on I'y, and then solve the
problem over 2, get the value of solution on I'y, and then solve the problem over 4
again, and so on. This is a Schwarz alternating algorithm: the standard finite element
method is applied to (2, and the Poisson integral formula, which is obtained by the
natural boundary reduction, is used for §,.
Consider an exterior boundary value problem of the harmonic equation

—Aw=0,nQ, w=g, only. 1
where 2 is the domain exterior to the closed curve Ty. The problem is equivalent to

-Au = f, in Q,
{ v = 0, on Ty (2)

for some proper f. With the condition that % is bounded in infinity, (2) has unique
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solution. Define the following Schwarz alternating algorithm:

—Au? = § in 0,
WP = o, on Ty k=1,2 (3)
ugk) = ugk_l), on I,
and (k)
-Au2 = f, in Qz,
k=12, 4
{ ugk) = u(lk), on I, @)

where ugo) € Hz(I;) is arbitrarily given, e. g. ugo) = 0. The solution of problem (2)

is in the space
V={weWs@Q)=0 on Iy}

Let
Vi={ve H(Q)|lv=0 on ToUT;}, Vo={veWs()v=0 on I},

then
ugk) - ugk_l) en, ugk) - ugk) € Va.

From the bilinear form
D(u,v) = / Vu - Vudz, (5)
Q

the inner product (u,v); and the norm || - ||; in V can be defined. Then (3) and (4)
are equivalent to the variational problems

Find ugk) eV + ugk_l) such that ©)
D(ugk) - u,vl) = 0, V’Ul € ‘/1
and
Find ugk) EVa+ ugk) such that @)
Dl —u,v) =0, Vuz € V5,
respectively. Let Py. : V — V1, i = 1,2, denote the projectors in (-, )1,
egk)=u—u§k), i=1,2
be the errors, we have
k k-1
eg) = PVI-Le;g )7 k=12 ---. (8)
egk) = PV2.L egk) , o
Then,
e§k+1) — P‘/].J‘P‘/?J‘egk)’ k=12,---, ©
D = PuPuel?, k=01,

Theorem 1 .
im Py =0, i=12, (10)
k—o0
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and there is a constant o € [0,1) such that
1Py Pyl <a,  1PypPrall <o (11)

Furthermore,
18 < o 1ePll, el < aFlled s (12)

Theorem 1 shows that the above Schwarz alternating method converges geometrically.
It is difficult to estimate the contraction factor for a general unbounded domain (2.
Here let © be an exterior domain of a circle I'g with radius Rp, and Ry < Rz < R;.
Let 7' : Wi(Q) — H¥(Ty) and +" : HY() — H2(Ty) be the Dirichlet
trace operators, P, : H3(T;) —» HA() = {v € H'()jv = 0 on I¢} and
Py : HE(T'y) - W2(Q) be the Poisson integral operators. Then,

y' Py Py : H¥(T'2) - HE(Ty),
' Pyy" Py : H3(Ty) ~ HZ(T}).
Theorem 2 The operators "' Pyy' Py and ~' Pay" Py are contraction mappings:

V' Py Pofllyr, <O0fllr,, V5 € HETY), (13)

IV Poy" Pigllyr, < dllgllyr,, Vo€ HE(T), (19)
where 0 < § < 1, and we can take

In(Rs2/Rq)

5= =2 15
(l n(Ry/Rp)’ ( ) )- (19)

From theorem 2, we can see that, the contraction factor ¢ only depends on Ry, Ri,

and Ry, and the larger the ratio R;/Rs, the smaller the factor 4. From the proof of
the theorem, we can also see that § - 0 when Ry/Rg — 1, and that

|04*| R2|nl R2|n
Ia——:T = jﬁg_rn—l—ﬂn‘ ( )2“”‘ n= ila :t2) ] (16)
1

where ay, and o, are coefficients of Fourier expansion of f and v"P,y'Paf (or g

and ' P2y" P, g), respectively. This means that the contraction factor is exponentially
attenuate with the frequency.

Applying theorem 2 to the above alternating algorithm, we have
g ~ullie, < C&* -0, an
uf? —ulla, < co* >0

when k — 0o, where C' depends on u, Oy, €5 and the initia] value on the artificial
boundary.

For proofs of these theorems are given in [20].
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3 A Dirichlet-Neumann Method Based On Natural Boundary
Reduction

Consider the Dirichlet problem for the Poisson’s equation

—-Au f, in Q
u

g, on PO:
where (1 is an unbounded domain with a closed curve I'y as its boundary. Adding the
proper boundary condition at infinity, (18) has unique solution.

Let circle I';, with radius R, encircle I'y such that dist (I';,Ip) > 0. Then Q
is divided into an interior subdomain §2; and an exterior subdomain 5. T'; is the
artificial boundary. We define the following Dirichlet-Neumann alternating domain
decomposition method.

Step 1. Choose original A® € HZ(I';), n = 0.

Step 2. Solve a Dirichlet problem in €,:

{—Aug‘ = f, in Qz, (19)

uy A" on Ty

(18)

Step 3. Solve a mixed boundary value problem in Q;:

~Au? = f, in  Q,

ul uly

Oup .. _Oup

= sy on I, (20)
uf = g, on Ip.

Step 4. Set A"+ = 0,u? + (1 ~6,)A", on I'y.

Step 5. Set n = n + 1, goto step 2.

By the theory of the natural reduction [17], the solution of (19) is given by following
the Poisson integral formula:

r’~ R} (7 2(¢')
2r  Jo R?+12—2Ryrcos(p —¢')

dg' + / Glp,p)f(0')d,
Q2 (21)

uz(r,p) =

and there is a natural integral equation on I'y:

Aup 1 [ A”(w)
ﬁ(w) == / o +// G(pp)f(p)dp, (22)

whR; sin®

where G(p,p') is the Green function for Qy:

R4 +1r2r'2 — 271! R2 cos(p — ¢')
R2 [r2 + 772 — 2rp! cos(<p o]

G(p,p) =

Then in fact we need not solve (19) by the finite or boundary element method in step
2. Applying (22), can be found directly from A", and obviously, the computation
is fully parallel. As Tor the numerical computation of the hypersingular integral given
by (22), see [17, 18]. Since £, is a small bounded subdomain, it is no difficulty to solve
(20) by the standard finite element method in step 3.
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Let €} =u—ul, i=1,2, p =ulr, — A", then the errors el and e} satisfy

—Aeg = 0, in QZ:
{ e = pu* on I, (23)
and
—Ae} = 0, in O,
i = -84, on Iy, (24)
el = 0, on T

Moreover, it is important to choose 8,, properly. If 8, is badly chosen, the algorithm
will diverge.

By the standard domain decomposition theorey {10] this Dirichlet-Neumann method
is equivalent to a precondition Richardson iteration method. Then the convergence
analysis can be reduced to the estimation of the characteristic values of Si 1S ie.,
estimating upper and lower bounds for

(SIL, p’) =1+ (S2N: p’) =1 G.2(H2[1,, H2l“)
(S1p, 1) (Sip, 1) ax (Hyp, Hip)

Here S = S; + S5 is the Steklov-Poincare operator on I';, Hy and H, are harmonic
extension operators of functions on I'; to (; and Qy, respectively,

(25)

ai(u,v) = // VuVudzdy, i=1,2. (26)
Q;

Theorem 3 If circle T}, with radius Ry < R; is the smallest circle which encloses
surrounds 'y and has the same center as I'y, then

R} + (Rp)®

az(Hz)\,Hg)\) S al(le\, Hl/\) S 2—-*;-—2-‘0,2(}]2)\, Hg)\), (27)
R{ — (Ryp)
Loz R} + (Rp)?
—\/‘—‘2-”)\"%;1 <a(HiA Hi)) < W”’\”;Fw (28)
1
EHA”%;FI < 02(H2A7 H2)\) < ”)\”2%,1_‘1’ (29)
where
re B = {ue HHT), [ pds =0}
I

Theorem 4 Under the assumption of theorem 3 our Dirichlet-Neumann method
and the corresponding preconditioned Richardson iteration method converge when

. 2 Y

0 < @ < 1. In particular, when 6 = %ﬁ%, the contraction factor satisfes
Rl 2

é< ﬁ%f()ﬂ—i))?’ the convergence rate —Iné > 1n[2(%§)2 + 1], the condition number

1 R},
1
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4 Conclusion

1. The boundary reduction is a forceful means for handling problems over unbounded
domains. Based on the boundary reduction and the boundary element methods,
some domain decomposition methods, where subdomains are overlapping or non-
overlapping, are developed. These methods are applicable to unbounded domains and
have the advantages of both the finite and the boundary element methods, while
standard domain decomposition method can only be used for bounded domain.

2. Comparing with other kinds of boundary reduction, the natural boundary reduction
has many advantages. Since a circle can be taken as an artificial boundary, the Poisson
integral formulas and the natural boundary integral equations can be applied directly
in the exterior subdomain 2, where we do not need solve any equations, and a full
parallel computation can be implemented. It is totally different from the finite element
computation.

3. Only the subproblem over interior subdomain §; should be solved by the finite
element method. Many available standard programs can be used. Since £2; can be taken
quite as small as possible, only few elements are necessary for solving the subproblem
over ;. It is much simpler than the coupling method of FEM and BEM.

4. Both the theoretical analysis and the numerical experiment show that these methods
are feasible and converges very quickly, provided that the ratio R; /Ry (for overlapping
subdomains) or Ry/Rj (for non-overlapping subdomains) is not too close to 1. The
larger the ratio, the faster the convergence.

5. These methods are suitable not only for solving Poisson equation, but also for
solving biharmonic, plane elasticity and Stokes equations. Since many results of the
natural boundary reduction for those equations are already given in [17], the extension
of these methods is not difficult. Moreover, they can also be extended to more general
problems when some more general boundary reduction is used.

REFERENCES

{1] Feng Kang (1980) Differential vs. integral equations and finite vs. infinite
elements. Math. Numer. Sinica, 2(1):100-105.

[2] Feng Kang and Yu De-hao (1983) Canonical integral equations of elliptic
boundary value problems and their numerical solution. Proc. of China-
France Symp. on FEM (Beijing, 1982), Science Press, Beijing, 211-252.

[3] Feng Kang (1984) Asymptotic radiation conditions for reduced wave
equation. J. Comp. Math., 2(2):130-138.

[4] Peng Kang and Yu De-hao (1994) A theorem for the natural integral
operator of harmonic equation. Math. Numer. Sinica, 16(2):221-226.

[5] Giroire J. and Nedelec J. C. (1978) Numerical solution of an exterior
Neumann problem using a double layer potential. Math. of Comput.,
32(144): 973-990.

[6] Glowinski R., Golub G. H., Meurant G. A. and Periaux J. eds. (1988)
Proc. of 1st Internaiional Symposium on Domain Decomposition Methods
for Partial Differential Equations, SIAM, Philadelphia, PA.



132 Domain Decomposition Methods for Unbounded Domains

[7] Hsiao G. C., Wendland W. L. (1985) On a boundary integral method for
some exterior problems in elasticity. Proc. Thilisi University UDK 539. 3,
Math. Mech. Astron., 257: 31-60.

[8] Hsiao G. C. (1988) The coupling of BEM and FEM-a brief review, Boundary
Elements X, Vol. 1:431-446.

[9] Hsiao G. C., Khoromskij B. N., Wendland W. L. (1994) Boundary integral
operators and domain decomposition, Preprint 94-11, Math. Institut A,
Univ. Stuttgart.

[10] Lu Tao, Shih T. M. and Liem C. B. (1992) Domain Decomposition Methods
~New Numerical Techniques for solving PDE, Science Press, Beijing.

[11] Thatcher R. W. (1978) On the finite element for unbounded regions, SIAM
J. Numer. Anal., 15(3).

[12] Wendland W. L. (1986) On asymptotic error estimates for the combined
BEM and FEM, Innovative Numerical Methods in Engrg., 88:55-70.

[13] Ying Long-an (1978) The infinite similar element method for calculating
stress intensity factors. Scientia Sinica, 21(1): 19-43.

[14] Yu De-hao (1983) Coupling canonical boundary element method with FEM
to solve harmonic problem over cracked domain. J. Comp. Math., 1(3): 195~
202.

[15] Yu De-hao (1985) Approximation of boundary conditions at infinity for
harmonic equation. J. Comp. Math., 3(3): 219-227.

[16] Yu De-hao (1991) A direct and natural coupling of BEM and FEM, Boun-
dary Elements XIII. Computational Mechanics Publications, Southampton,
995-1004.

[17] Yu De-hao (1993) Mathematical Theory of Natural Boundary Element
Method, Science Press, Beijing.

[18] Yu De-hao (1993) The numerical computation of hypersingular integrals
and its application in BEM. Advances in Engineering Software, 18:103-109.

[19] Yu De-hao (1994) The domain decomposition method of alternative FEM
and natural BEM over unbounded domain. Proc. of the 6th China-
Japan Symposium on Boundary Element Methods, International Academic
Publishers, Beijing, 3-8.

[20] Yu De-hao (1994) A domain decomposition method based on natural
boundary reduction over unbounded domain. Math. Numer. Sinica, 16(4):
448-459.

[21] Yu De-hao (1995) On relationship between Steklov-Poincare operators
and natural integral operators and Green functions. Math. Numer. Sinica,
17(3):331-341.



