An Additive Schwarz Algorithm
for a Variational Inequality

Shuzi Zhou

1 Introduction

Let Q0 be a bounded polygonal domain, V be a subspace of the Sobolev space
H*(Q),a(-,-) be a continuous, coercive and symmetric bilinear form on V xV, f € V*.
For simplicity, we assume that the elements of V satisfy homogeneous boundary
condition on 9. Consider the variational inequality: find v € K such that

a(u,v—u)> flv—u), YWwekK 1)
where
K={veV:v>¢inQ,¢ € H(Q),4 < 0on 8N} (2)
or
K={veV:¢<v<vin ¢y e H(D),4 <0< on N} (3)

Assume that V* C H3(f) is the finite element approximation of V' and that the set
of nodal parameters includes the value of the function in V}, at the nodes. Suppose
#,% € C°(£). The finite element approximation of problem (1), (2) or problem (1),
(3) is: find up € K* such that

ah(Uh,'U - Uh) 2 fh(v - Uh), Yo e Kh7 (4)

where
K" ={v € V" :v > ¢ at all the nodes }, (5)
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or
K" ={veV":$<wv<1 at all the nodes }, (6)

an(.,.) is a continuous, coercive and symmetric form on V* x V* f, € (V*)*. In [2]
a multiplicative Schwarz algorithm for solving problem (1), (2) and problem (1), (3)
with & = 1 was studied. In [5] a multiplicative Schwarz algorithm for solving problem
(1), (3) with k = 2 was proposed. Combining the methods of [2, 5] and the so-called
average method of [3, 4], mainly for solving problem (1), (3) with k = 1, an additive
Schwarz algorithm was given in [5]. A differential additive Schwarz algorithm has been
discussed for solving (4) in [3, 4] provided that K" is a cone. Based on the work just
mentioned, we propose an additive Schwarz algorithm for solving problem (4), (5) and
problem (4), (6) in more general cases. We give the algorithm and the convergence
theorem and get so-called finite step convergence for coincident components.

A similar algorithm has been studied in [8] and [9]. But they require a special
choice of the initial value. In [8], monotone convergence was proven and in [9] the h
independent convergence rate has been obtained.

2 An Additive Schwarz Algorithm

We use the two-level triangulation of (1}, given by Dryja and Widlund (ref. {1}). In this
way, we get overlapping open subregions Q;,i=1,---,m. Let V; = VRN H}(£;). The
algorithm is defined as follows.
Algorithm I
Step 1 . Given w; > 0,i =1,--+,m with &%, w; = 1. Take u® € K” and n := 0;
Step 2 . For ¢ = 1, - -, m solve the following subproblems: find u™ € K[ such that

an(u™, v —u™) > fr(v —u™), Vve K},
where K7 = (u™ + v;) N K*?,
Step 3 u™tt =370 wuti;
Step 4 n:=n+1, go to step 2.
In order to prove the convergence of Algorithm I, we consider the following
variational inequality: find u* € K", such that

ap(u*,v —mu*) > fo(v -mu*), Ywe K} +---+K, (M
where K = (ux+V;)NK"i=1,... m.

Lemma 1. Problem (7) is equivalent to Problem (4), (5) or Problem (4), (6).

Proof. It is easy to prove that the solution of Problem (4), (5) (or (4), (6)) satisfies
(7). Now we prove that any solution of (7) solves (4), (5) (or (4), (6) ). Assume that
u* solves (7). It is sufficient to prove, for any v € K h that

ap(u*, v —u*) > fa(v —u*). (®)

Let 0. t?e the open subset of Q with . C Q, containing all the interior nodes. Then,
there exists {;} such that 0 < 6; < 1, 6; € C5°(f);) and >, 0 =1on .. Therefore,
we have B

v = ZIh(Giv) on

=1
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where I" is the V" ~interpolation operator. Obviously v; = I h(6;v) € V; and

m m
v—u*:E vi—u*zg w; — mu®, )]
i=1 i=1

where w; = u* + I"(0;(v —u*)). It is easy to see that w; € K. Hence we have, by (7),
that ™ m
ah(u*,Zwi —mu*) > fh(Zwi - mu*),

i=1 i=1
which combined with (9) yields (8). The lemma, is proved.
Let Ju(v) = ap(v,v)/2 — fn(v). Then up,u™* are, respectively, the solutions of the
following problems:

h Kh h — mi
u” € > J (uh) vrg;?th(v)a

u™ € KP, Jp(u™) = min Jy(v).
veK]
By using the lemma and the strict convexity of J(v), we obtain the following
convergence theorem.

Theorem 1. The sequence {u™} produced by Algorithm I converges to uy in V.
Moreover we have u™* — uy, (n = 00),i=1,---,m.

Assume that k¥ = 1 and that V" is a Lagrange finite element space. Then Problem
(4), (5) is equivalent to a linear complementary problem which has the following matrix
form:

U>®, AU-F>0,(U~-®T(AU -F) =0, (10)
where U,® € RV, their components {U;}, {®;} are respectively the values of up, @
at the interior nodes, A = (a;;);=1,aij = anlwi, 9;), F = (F;)IL,, Fj = f(y;), and
{y;} is the basis of V*. Then K” corresponds to

C={VeRY:V;>%;j=1---,N}.

Let I = {1,-.-, N}. Denote the index set of the nodes in ; by I;. The matrix form

of Algorithm I is as follow.
Algorithm I*
Step 1 Given w; >0,1,--+,m with }.7* , w; = 1. Take U’ € C.n := 0; .
Step 2 Fori = 1,---,m, solve the subproblems : find U™* € RY such that U™* > &
and

UM =UP for j € I/I;,

(AU™ — F); > 0,(U} — &;)(AU™ — F); = 0 for j € I;;
Step 3 U"+l =Y w;U™5
Step 4 n:=n+1, go to Step 2.

Assume that U is the solution of (10) and let J = {j € I : U; = ®;}. We call J
the coincident set and U; the coincident component if j € J. We say that problem
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(10) is nondegenerate if j € J implies (AU — F); > 0. By Theorem 1 we know that
U - U(n = o) and U™ — U(n = 0),i = 1,---,m. It is not difficult to show
that the coincident components are reached by the corresponding components of U i
within a finite number of iteration steps, just as the following theorem states.

Theorem 2. If (10) is nondegenerate, then there exists a positive integer ng such that
forn >mng

UM =9;,VjeJnk,

UM > @5, Vie (I\)N L.

A counterexample shows that U™ does not have this property of U™ Now we
consider the so-called average with variable weights (ref. {4]). Assume @ € Q. We say
that @ is a k-point if () belongs to at most k subregions.

Let
Q(il7'..7ik) = Qi} ﬂﬂﬂlk
We construct a function @™ as follows: for a k-point @ € Q(41,- - -,ix) define
1
—7+1 _ ) i
wQ) =2 D_umH(Q),
=1

where u™* is defined by Algorithm I with w; = #,i =1,---,m. Then it is easy to see

that the following relationship between u™ and @™ holds:

m—k
m

u"t(Q) = —T—IZ—H"‘H(Q) + u™(Q) for Q € Q(iy,- -, ).

Therefore we know that 4" — u(n — co) by Theorem 1. Moreover we can show
Theorem 3. If (10) is nondegenerate and U™ is the vector corresponding to @™ then
there exists a positive integer ng such that for n > ng

(7}‘ =®;, VjeJ,

U > @;,¥jel\J.

For Problem (4), (6) we can establish similar definitions and conclusions.
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