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1. Introduction

We propose a generalization of the Neumann-Neumann preconditioner for the
Schur domain decomposition method applied to a advection diffusion equation.
Solving the preconditioner system consists of solving boundary value problems in
the subdomains with suitable Robin conditions, instead of Neumann problems.
Preliminary tests assess the good behavior of the preconditioner.

The Neumann-Neumann preconditioner is used for the Schur domain decom-
position method applied to symmetric operators, [5]. The goal of this paper is to
propose its generalization to non symmetric operators. We replace the Neumann
boundary conditions by suitable Robin boundary conditions which take into ac-
count the non symmetry of the operator. The choice of these conditions comes
from a Fourier analysis, which is given in Sec. 2. When the operator is symmetric
the proposed Robin boundary conditions reduce to Neumann boundary conditions.
Also as in the symmetric case, the proposed preconditioner is exact for two sub-
domains and a uniform velocity. The preconditioner is presented in the case of a
domain decomposed into non overlapping strips: the case of a more general domain
decomposition will be treated in a forthcoming work as well as the addition of a
coarse space solver.

The paper is organized as follows. In Sec. 2, the method is defined at the
continuous level. In Sec. 3, the proposed preconditioner is constructed directly at
the algebraic level. This may be important, if the grid is coarse and if upwind
methods are used because the preconditioner defined at the continuous level is not
relevant. In Sec. 4, we propose an extension to the case of nonmatching meshes
(mortar method) [3] [1]. In Sec. 5, numerical results are shown for both conforming
and nonconforming domain decompositions (mortar method).

2. The Continuous Case
We consider an advection-diffusion equation
L(u)=cu+a.Vu—vAu=f inQ=]0,L[x]0,n],
u=0 on 0f.
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The positive constant ¢ may arise from a time discretization by an Euler implicit
scheme of the time dependent equation. The equation is solved by a primal Schur
method. We focus on the case when the domain is decomposed into non overlapping
vertical strips Qx =|lx, le+1[x]0,n[, 1 <k < N. Let Tk k41 = {lk+1}%]0,n[.

REMARK 1. The general case of an arbitrary domain decomposition will be
treated in a forthcoming work.

We introduce

S (Hop (0, nD)N =1 x L3(Q) — (H~Y/2(j0,n]))N !

1 Ov  Ouvgp
((uk)lgng—l,f) = (21/((9—7119 Ongi1

where vy satisfies

kg1 ) 1<k<N-1

(1) L(vk) = f in Qy,
(2) vy =ugon gy for 1 <k< N -1,
(3) Vg = ug—1 on ['y_qx for 2 < k < N,
(4) v = 0 on 00 N 0.

It is clear that U = (ur, ,,,)1<k<nN—1 satisfies

At the continuous level, we propose an approximate inverse of S(.,0) defined by

T+ (H2(0,)N " — (Ho>(0,n))V ",
1
(gk) <k<N-1F (§(Uk + Uk+1)rk,k+1)1§k§1v—1,

where vy satisfies

(5) L(vg) =0 in Q,

(6) (I/aa—nk—ag )(’Uk)—gk on I'x k41 forl<k<N-1,
(7) (1/8‘9—% aﬁ Sk (vg) = gk—1on gy for 2 <k <N,
(8) vk = 0 ondQ N Y.

REMARK 2. Our approach is different from that used in [7] or [4], where the
interface conditions VaaTk — min(a.7ik, 0) are used in the framework of Schwarz
algorithms.

The Robin boundary conditions in (6)-(7) are not standard and lead neverthe-
less to a well-posed problem:

PROPOSITION 3. Let w be an open set of R?, f € L?*(w), A € H™/2(0w),
@€ (CY(w))? ceR s.t. c— 3div(@) > a > 0 for some a € R. Then, there exists a
unique u € H'(w) s.t.

a.n

//cvw+(aVv)w+l/Vva / j—vw
Ow
=<\ WS y-1/25 q1/2 +//fw, V'LUEHI( )
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PROOF. When using the Lax-Milgram theorem, the only thing which is not
obvious is the coercivity of the bilinear form

- =

(v,w) — // cvw + ((i.Vv)w—{-qu.Vw—/ a—;—vw
w Ow

Integrating by parts leads to

//cv2+(d'Vv)v+V1Vv|2 / ﬂvz—//c——dw Jo? + v|Vol?

> min(a, v) ||v||H1(w)

O

PROPOSITION 4. In the case where the plane R? is decomposed into the left
(Q1 =] — 00,0[xR) and right (Q2 =|0, 00[xXR) half-planes and where the velocity @
18 uniform, we have that

7 0S8(.,0)=Id.

PROOF. A point in R? is denoted by (z,y). The vector @ is denoted @ =
(ag,ay). The unit outward normal and tangential vectors to domain (24 are denoted
by 7ir, and 7% respectively. The proof is based on the Fourier transform in the y
direction and the Fourier variable is denoted by £. The inverse Fourier transform
is denoted by F~!. Let us compute S(ug,0) for uy € H'/2(R). Let wy be the
solution to (1)-(4), with f = 0 and g as a Dirichlet data. The Fourier transform
of (1) w.r.t. y yields

(¢ + a;0; + ayi€ — vy + vE) (Wi (x,£)) =

where i? = —1. For a given ¢, this equation is an ordinary differential equation in
« whose solutions have the form ay(€)e @12l 4 g, (£)e*+©)lel where
—a.ng — \/4ve + (@.1)? + 4ia.7 &y + 46202
Ax(§) = 2
v
and

< —@.fg + /Ave + (@.7k)? + 4id. 71 Ev + 46202
Ae(§) = 2
The solutions wy must be bounded at infinity so that 8y = 0. The Dirichlet

boundary conditions at * = 0 give ax(§) = 4o(€). Finally, we have that wy =
F (o (&)eM 21y satisfy (1)-(3). Hence,

S(ug, 0) = %}"1(\/41/0 (@) + dia Rty + 4807 g (€)).

In the same way, it is possible to compute 7 (g) for g € H~/2(R). Indeed, let v,
(resp. v2) be the solution to (5)-(7) in domain Q5 (resp. 2). The function vy may
be sought in the form vy = F~!(ax(€)e*©)Iel). The boundary conditions (6)-(7)
give:

3(6) = (=vAu(§) = Z5)au(©)
_ VAvet (@) 24%.73@ IS o
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~ 2 o _ l ~
Hence, 14(0,6) = et (6) and T(g) = 3(01(0,€) + 2200,6))
m ~
T(g) 22]_-~1( g(é) )
Vave + (@7i)? + 4id.Hév + 46202
Hence, it is clear that 7 o S(.,0) = Id. d

REMARK 5. The same kind of computation shows that if max( |~ ~| , L\/— >

1, we still have 7 0 S(.,0) ~ Id. This means the preconditioner 7 remains efficient
for an arbitrary number of subdomains as long as the advective term is not too
strong or the viscosity is small enough. Moreover, in the case of simple flows,
we expect that the preconditioned operator is close to a nilpotent operator whose
nilpotency is the number of subdomains, [2]. In this case, the convergence does not
depend on the parameter ¢ and the method works well for large 6t.

3. The Discrete Case

We suppose for simplicity that the computational domain is R? discretized by
a Cartesian grid. Let us denote A = (A);;kiez the matrix resulting from a
discretization of the advection-diffusion problem. We suppose that the stencil is
a 9-point stencil (Afjl =0for [i —k| > 2or|j—1 > 2). This is the case, for
instance, for a Q1-SUPG method or for a classical finite difference or finite volume
scheme. We have to solve AU = F where U = (uij)i jez is the vector of the
unknowns. The computational domain is decomposed into two half planes w; and
wo. We introduce a discretized form Sy, of the operator S (we adopt the summation
convention of Einstein over all repeated indices)
(9) Sh . Z RZXZ — RZ
(10)  ((uoj)jezs (Fij)ijen) = (Ag; wly + Bj tugy + Aholy + BE 'y — Foy)jez
where (v]7) satisfy

At =F; fori<0ifm=1 andi>0ifm=2, j€Z,
vg; = Uoj, for j € Z.

The coefficients B ! are the contributions of the domain wy, to AQ}, AY} = B} '+
B?!. For example, if @ = 0, B} ' = B? ! = Af\,/2. For example, for a 1D case with
a uniform grid and an upwind finite difference scheme (a > 0) and ¢ = 0,

1 Vooa o _ 2V  a L 1 9 Y

Ay =TTy Ao—;g*’ﬁ» Ao—"ﬁvB h2+h and B YA

Sh(ug, F') is the residual of the equation on the interface. It is clear that Uy =
(uo;)jez satisfies
(11) Sh(Up,0) = =Si(0, F).

We propose for an approximate inverse of Sy(.,0), 75 defined by
(12) Ty : R? — R%
(13) (95)jez = —(Uoj + v3;) ez

where (v l]),<0 jez and (v 2])l>0 jez satisfy
AO’
(14) Aklvkl 0,1<0,5€Z, A0]v1,+ 21)6[ gj
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and
A()l
(15) A2 =0, 0> 0,5 €2, Ao} + 2‘“@31 9.

REMARK 6. For a Neumann-Neumann preconditioner, in place of (14) and
(15), we would have Ag''v! ), + B} 'vj, = g; and Aglo}, + B? 'vg = g;.

REMARK 7. For a constant coefficient operator £ and a uniform grid, a discrete
Fourier analysis can be performed similarly to that of the previous section. It can
then be proved that

T, 0 Sh(.,0) = Idy,

REMARK 8. The last equations of (14) and (15) correspond to the discretization
of the Robin boundary condition v2- o 5 . Considering the previous 1D example,

we have
A vh — vl a vh—vl, a
h(Ag vk, + 71}3) (1/+ah/2)T1 — 5111_1 = l/—)-—h—-— - 5(21)1_1 - ),
and
A vi—vi a

U 0 0~ Y 2
(16) h(4; v} + - Y o) = 5%
Another discretization of 1/— - % would not give (16). This the reason why the

approximate inverse is dlrectly defined at the algebraic level. The discretization of
the Robin boundary condition is in some sense adaptive with respect to the dis-
cretization of the operator (SUPG, upwind finite difference scheme or finite volume
scheme). In the previous 1D example, a straight forward discretization of the Robin
boundary condition would give for domain 1

vh—vly a
V——— — =Y
h 2"

When ah > v, which is usually the case, it is quite different from (14).

4. Adaption to the Mortar Method

The mortar method was first introduced by C. Bernardi, Y. Maday and T. Pa-
tera ([3]). It has been extended to advection-diffusion problems by Y. Achdou
([1]). Tt enables to take nonmatching grids at the interfaces of the subdomains
without loss of accuracy compared to matching grids. In our case, the additional
difficulty lies in the equations (14) and (15) which are no longer defined. Indeed,
the coefficients Agé are defined only for matching grids where they correspond to
coefficients of the matrix before the domain decomposition. Only the coefficients
Bj™ are available. Then, the trick is to take for Ag} in (14) and (15), the matrix
entries at the nearest interior points of the subdomains. Therefore, the equations
(14) and (15) are replaced by

-1

Aklvkl—O 1<0,j€Z, A0]11v11,+ 5 vél g

and
i\

A
Akl'Ukl = 0 7> 0 _] S Z A(lJ;'U%[ =+ 21] 'U(Z)l g
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TABLE 1. Number of iterations for different domain decomposi-
tions (@ = min(300y?, 3) e;)

Precond. | 40-20-40 | 40-40-40 | 40-60-40 | 60-60-60 | 60-60-60(geo) | 60-60-60-60-60
ft=1 R-R 11 12 13 13 12 11
v =0.001 N-N 31 37 38 43 67 60
- 21 33 37 >100 66 >100
6t =0.1 R-R 13 13 12 11 11 10
v =0.01 N-N 22 23 25 26 31 33
16 22 24 27 >100 19

TABLE 2. Number of iterations for different velocity fields, a three-
domain decomposition and 40 points on each interface.

Precond. | normal | parallel | rotating | oblique

R-R 10 2 11 11
N-N 25 2 13 27
- 21 >50 45 12

5. Numerical Results

The advection-diffusion is discretized on a Cartesian grid by a Ql-streamline-
diffusion method ([6]). Nonmatching grids at the interfaces are handled by the
mortar method ([1]). The interface problem (11) is solved by a preconditioned
GMRES algorithm. The preconditioners are either of the type Robin-Robin (R-R),
Neumann-Neumann (N-N) or the identity (-). In the test presented below, all the
subdomains are squares of side 0.5. The figures in Tables 1 and 2 are the number
of iterations for reducing the initial residual by a factor 10~1°.

In Table 1, the first five columns correspond to a three-domain decomposition
and the last one to a five-domains partition. The grid in each subdomain is a N x N
Cartesian grid, not necessarily uniform. The first line indicates the parameters N.
For instance 40 — 20 — 40 means that the first and third subdomain have a 40 x 40
grid whereas the second subdomain has a 20 x 20 grid. In this case, the grids do not
match at the interfaces. The grids are uniform except for the last but one column:
in this case, the grid is geometrically refined in the y-direction with a ratio of 1.2.
The velocity which is not varied, has a boundary layer in the y-direction.

In Table 2, the velocity field has been varied:

normal (to the interfaces): @ = min(300  y?, 3)e;, parallel (to the interfaces):
d@ = ey, rotating: @ = (y — yo)e1 — (& — xo)ez where (zg,yo) is the center of the
computational domain and oblique: @ = 3e; + ea. The mesh is fixed, the viscosity
is v = 0.01 and the time step is 6t = 1 = 1.

Tables 1 and 2 show that the proposed Robin-Robin preconditioner is very
stable with respect to the mesh refinement, the number of subdomains, the aspect
ratio of the meshes and the velocity field. More complete tests as well as the
complete description of the solver will be given in [2].
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6. Conclusion

We have proposed a preconditionner for the non symmetric advection-diffusion
equation which generalizes the Neumann-Neumann preconditionner [5] in the sense
that:

o It is exact for a two-domain decomposition.

¢ In the symmetric case, it reduces to the Neumann-Neumann preconditioner.
The tests have been performed on a decomposition into strips with various veloc-
ities and time steps. The results prove promising. In a forthcoming paper [2],
we shall consider more general decompositions and the addition of a coarse level
preconditioner.
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