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Nonoverlapping Domain Decomposition Algorithms for the
p-version Finite Element Method for Elliptic Problems

Ion Bica

1. Introduction

The nonoverlapping domain decomposition methods form a class of domain
decomposition methods, for which the information exchange between neighboring
subdomains is limited to the variables directly associated with the interface, i.e.
those common to more than one subregion. Our objective is to design algorithms
in 3D for which we can find an upper bound on the condition number k of the
preconditioned linear system, which is independent of the number of subdomains
and grows slowly with p. Here, p is the maximum degree of the polynomials used in
the p-version finite element discretization of the continuous problem. In this paper,
we survey some of the results obtained in [2].

Iterative substructuring methods for the h—version finite element, 2D p-version,
and spectral elements have been previously developed and analyzed by several au-
thors (3, 4], [6], [1],[13, 14], [11], [5], and [7, 8, 9].

However, some very real difficulties remained when the extension of these meth-
ods and their analysis to the 3D p—version finite element method were attempted,
such as a lack of extension theorems for polynomials. The corresponding results are
well known for Sobolev spaces, but their extension to finite element spaces is quite
intricate. In our technical work, we use and further develop extension theorems for
polynomials given in [1], [12], and [10] in order to prove the following bound on
the condition number of our algorithm:

(1) k < C(1 + logp)*.

We believe that two logs can be dropped and a bound, similar to the ones in [3, 4],
(6], and [13, 14], can be obtained.

In Section 2, we describe the model problem we are solving and the basis func-
tions of the finite element space which are best suited for our algorithm. Section 3
contains a brief description of the preconditioner on which the algorithm is based.
In Section 4, we compute the local and global condition numbers of our algorithm
and make specific recommendations on the best choice of preconditioners.
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2. Continuous and discrete problems

We consider the following problem formulated variationally: Find © € V such
that

(2) a(u,v) = /Q p(x)VuVu dx = f(v) YveV.

Here, V is a subspace of H'(f2), determined by boundary conditions, {2 is a polyhe-
dral region triangulated with tetrahedra Q;, = U;. We denote by T' the interface
between subdomains, I' = UdQ; \ 9. We assume that the boundary conditions are
of the same type within each face of any tetrahedron that is part of the boundary.
The coefficient p(x) > 0 can be discontinuous across the interface between the sub-
domains, but varies only moderately within each ;. Without further decreasing
the generality, we assume p(z) = p; on §2;. The bound (1) holds for arbitrary jumps
in p;.

We discretize the problem by the p-version finite element method. The finite
element space VP consists of the continuous functions on §2 which are polynomials
of total degree p in each §2;. We end up with a system Kx = b, where the stiffness
matrix K is built from local stiffness matrices, by subassembly. We will now define
the basis functions on a reference tetrahedron §2,.;. There are many ways to do
so, and a proper choice is the key to obtaining an efficient iterative method. We
present here only a general description. We distinguish between four types of basis
functions, associated with the vertices, edges, faces, and interior of {2,..

1. A wvertex basis function has value one at a vertex and vanishes on the face
opposite to that vertex. There is only one vertex function per vertex.

2. An edge basis function vanishes on the two faces which do not share the edge.
The traces of the edge functions associated with the same edge are chosen
to be linearly independent on that edge. There are p — 1 such functions per
edge.

3. A face basis function vanishes on the other three faces. The traces of the face
functions associated with the same face are chosen to be linearly independent
on that face. There are (p — 1)(p — 2)/2 such functions per face.

4. An interior basis function vanishes on Q... There are (p—1)(p—2)(p—3)/6
interior functions and they are linearly independent.

The total number of vertex, edge, face, and interior functions is (p+1)(p+2)(p+3)/6.
It is easy to see that they form a basis for PP(),¢y), the space of polynomials of
total degree p on €,.7. The union of the closed edges is the wire basket of {2,.;.

It turns out that if we use some standard vertex and edge functions [16], the
preconditioned system that defines our algorithm is very ill conditioned; cf. [2,
Section 5.1.1]. We therefore construct low energy vertex and edge functions; see (2,
Chapter 4] which result in the bound (1). They satisfy certain stability properties
related to their values on the edges and boundary of the reference tetrahedron.
Their construction is based on the extension theorems in (1], [12], [10]. To avoid
technical details here, we only remark that the low energy functions with highly
oscillatory traces on the wire basket decay much more rapidly away from the edges
than the standard ones that have the same trace. See Fig. 1 for a comparison of
low energy and standard (high energy) basis functions.
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FIGURE 1. Basis functions on the face F3 of the reference tetrahe-
dron .

We next eliminate the interior degrees of freedom and end up with a system
Szp = br, where S is built from local Schur complements, also by subassembly.

3. A wire basket algorithm

This algorithm is similar to the wire basket algorithm defined in [6, Section
6.2] and [13, 14, Section 6]. An interesting theoretical feature of this algorithm is
that the bound on the condition number of the global preconditioned system is the
same as the local one.

We use a preconditioned conjugate gradient algorithm, with the preconditioner
built from blocks that correspond to subspaces. In its simplest form, this algorithm
is a block-Jacobi method. We define it in the variational framework known as the
abstract Schwarz theory; see, e.g., Smith, Bjgrstad, and Gropp [15].

The coarse space Vi is the space spanned by the vertex and edge functions
and contains the constants. The construction of such a space is quite intricate; cf
[6, Section 6.2], [13, 14, Section 6], [2, Section 4.3].

All the local spaces are associated with individual faces of the tetrahedra. For
each face Fj, we define the face space Vg, as the space of functions in VP, that
vanish on all the faces of the interface I' except Fy. We obviously have

VP =V +> V.
k
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TABLE 1. Local condition numbers, wire basket algorithm, low
energy vertex and edge functions

p | Constants not in the wire basket | Constants in the wire basket
Amin Amaz K Amin Amaz K
4 10.1921 1.8000 9.3691 0.1331 2.2549 16.9416
5 [ 0.1358 1.7788 13.1022 0.1063 2.3890  22.4775
6 | 0.1033 1.8203 17.6186 0.0842 2.4503  29.1136
7 10.0864 1.8205 21.0818 0.0753 2.4996  33.2026
8 10.0740 1.8407 24.8854 0.0655 2.5374  38.7335
9 | 0.0656 1.8476 28.1508 0.0601 2.5668  42.6989
10 | 0.0590 1.8588 31.4892 0.0541 2.5911 47.9346

To each subspace V = Vi or Vg, , we associate an operator Ty defined by
ay (Tyu,v) = a(u,v) YveV.

Here, ay (-, ) is a positive definite, symmetric bilinear form on the subspace V.
Each bilinear form ay (-,-) uniquely defines the operator Ty and vice-versa.
We say that Ty is an approximate projection. If av(-,-) = a(-,-) then Ty = Py,
the a(-,-)-orthogonal projection on V. For specific subspaces, we choose Ty to be
almost spectrally equivalent to Py, but cheaper to compute.
On the coarse space, we can use the exact solver a(-.-) or, more economically,
an inexact solver based on the bilinear form

(3) dw (u,u) = (1 +logp) ) inf ||lu — cill2w,)-

On each face space, we choose ap, (-, ) = a(-,").
The additive Schwarz method (ASM) is defined by the operator

(4) Ta:Tw+TF]+...+Tan,

where n f is number of faces in I'. The equation T,u = ¢,, where g, = Twu+T1r u+
...+ TF,,u can be solved by the conjugate gradient method, which can be viewed
as a preconditioned conjugate gradient method for the initial system Szr = br.

The preconditioner for the additive Schwarz method, using the exact solver on
Vi, has the following matrix form:

Sww 0 0 0

0 Sk Ry 0 0

(5) SPTEC = 0 0 SF2 r 0
0 0 0

If we use the inexact solver aw (-, ), the block Sy w is replaced by

Z (M 20y (M(i)z(i))T)

Sww = (1+1 M — ,,
ww = ( ng)< z(i)lM(i>z(i>

i

where M ® is the mass matrix of the wire basket W;, and z(*) is the vector containing
the coefficients of the constant function 1. The mass matrix M, for our particular
choice of vertex and edge functions, is tridiagonal.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



DOMAIN DECOMPOSITION FOR p-VERSION FEM 235

450 T T T T T

400~

3501

300

250

200+ 0 Bounds on the condition numbers E
1501 A

100+ x Actual condition numbers g

degree

FIGURE 2. Condition numbers and bounds on them, for the wire
basket algorithm

The symmetrized multiplicative method (MSM) is defined by the operator
Tn=1-(U-Tw)I-Tr) - I-Tr,) - I-Tr)I -Tw).
The hybrid method (HSM) is defined by the operator
Th=I1-(I-Tw)I~-Tr —---Tr,, ) - Tw).

The matrix form of the preconditioners defined by the operators T;, and T}, is not
block-diagonal.

4. Numerical experiments

We start by computing the local condition number of the preconditioned Schur
complement, on a reference tetrahedron; see Table 1. We obtain lower condition
numbers in case when the constants are not in the coarse space space. However,
as we mentioned in Section 3, we must add the constants to the coarse space. We
do this at the expense of increasing the condition numbers by a factor of 1.5 — 1.6.
Next, we look at the bounds on these condition numbers, as given by the theory.
To this end, we compute all the constants in the inequalities used in the proof (1);
see [2, Section 5.1.2]. The asymptotic logarithmic growth of these bounds is more
visible than that of the actual condition numbers; see Fig. 2.
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FIGURE 3. Comparison of additive, hybrid, and multiplicative
methods, p = 6, exact solver on the wire basket.

We now move to global experiments. The number of iterations is fixed before-
hand. We compare the performances of the additive, hybrid, and multiplicative
methods, see Fig. 3. The extreme eigenvalues are computed via the Lanczos it-
eration. We have performed experiments on a cubic region that consists of 192
identical tetrahedra, for p = 6, with Dirichlet boundary conditions on one face of
2, and Neumann on the others. We have used the exact solver on the wire basket.
We remark that the global condition number of the additive method coincides with
the local one, given in Table 1, at the intersection of the last column and the row
that corresponds to p = 6. We remark that the multiplicative method performs bet-
ter than the hybrid method, which performs better than the additive one. We can
use an inexact solver on the wire basket, which makes the coarse problem cheaper
to solve, at some expense in the performance of the full algorithm; see [2, Section
5.2.3].
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