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1. Introduction

Once a structure is decomposed into substructures, mode synthesis is the
Rayleigh-Ritz approximation of the global eigenvalue problem on the space spanned
by a few eigenmodes of each substructure and some coupling modes which aim at
describing the restriction to the interface of the global eigenmodes [7]. These cou-
pling modes are defined here at the continuous level as the eigenfunctions of an ad
hoc preconditionner of the Poincaré-Steklov operator associated with the interface
as in [2]. The definition of this preconditionner of Neumann-Neumann type relies
on suitable extension operators from the boundary of the subdomains to the whole
interface. This paper concentrates on the definition of such extension operators in
the case of plate bending and for general domain decompositions with cross-points
and extends [2].

The plate bending problem is posed over a domain w C R? which is splitted
in p substructures w; separated by an interface v. Let D, v, and p denote the non-
necessarily constant stiffness, Poisson’s ratio and mass density respectively. Greek
indices take their value in {1,2} and summation of repeated indices is assumed.
For u , v € H?(w), define :

(u,v)iz/ puv,
0 () = [ DI = )0ugidugy + vAuse) + du,0),

Wi
P P

(u,v) = Z(u,v)i , a(u,v) = Zai(u,v),

=1 i=1

where d stands for an arbitrary positive constant and A for the Laplacian. Let V
denote the space of admissible displacements, i.e. the subspace of H?(w) satisfying
the Dirichlet boundary conditions along dw of the problem, if any.
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It is well-known that the global eigenvalue problem :

Find (A\,u) eRxV st. a(u,v) = Au,v) YweV

possesses a family (A, uk):;“l’ of solutions. In the same way, for 1 <i < p set :

7¢='yﬂ8w,-, Viz{wM;WEV} and V' ={veV;v=0and Vv=0on"y}.

Let (Aij, ui;);25 € RT x V; denote the family of solutions of the problem :

Find (A\u) € (R) x V0 sit.
ai(u,v) = Mu,v); Yv € V.

Mode synthesis uses as test functions the fized interface modes u;; and coupling
modes that do not identically vanish on 7.

2. Definition of the coupling modes
2.1. Basic trace and extension properties. The admissible displacements

ow

w € H?(w) possess two independent traces along y, w}, and 6, = (F)h’ where 77
n

denotes a unit normal vector along v, that is defined on each edge independently.

Let us recall a characterization of the space V,, = {wh, (b—‘i’)h; wE V} : along
i

0 .
each edge T, (w),, (a—‘f)h) e H¥*(I;) x HY*(I';). Moreover, compatibility
conditions hold at every vertex O of the interface. Assume that two edges I'y
and T’y share a common vertex O, as in Figure 1, and denote by (wy,6,,1) (resp.

(wa,0,,.2)) the traces of w along T'; (resp. I'z). The continuity of w and the H'/2-

8Wi
3 T;+0n,; 1; if 7; denotes
S

1
a unit tangential vector along I';, s; an associated curvilinear abscissa on I';, and
fi; = f|r,, the compatibility conditions write :

continuity of Vw must be ensured at O. Since Vwp, =

a Wl(O) = WQ(O)
2 w1, - o o
@) 7+ Op1m1 = =27+ On2mia at O
0s1 0s9
for every vertex O and every set of edges that cross at 0. If N, denotes the

Ne
number of edges, it turns out that V, is isomorphic to the subspace of H H®/ 2(Ty) x
i=1
HY2(T;) of pairs satisfying above compatibility conditions as well as the Dirichlet
boundary conditions along dw, if any.
Let R : V, — V denote the biharmonic extension operator defined by

P
a(R(v,0),2) =0 Yz e V' = | JV,
i=1

OR(v,6)
on
This problem splits into p independent plate problems. Now, let (wy, On,[)f:"f’ denote

a given dense family in V. Then coupling modes will be defined as R(w;,0,,) € V.
The question of chosing a suitable family is addressed in the next section.

(3)

R(v,0) =v, =0 along 7.
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2.2. A generalized Neumann-Neumann preconditioner. Let us set
Vi, = {(v,0):; (v,8) € V,}, and let P; : V,, — V, denote a continuous ex-
tension operator, that is also defined as a continuous operator from L?(v;) x L?(v;)
to L2(vy) x L%(vy). For any pair of functions (T, M) defined on ~;, let w € V; stand
for the solution of the well-posed Neumann problem

ai(w,z)=/ Tz+M%
R

i EF VzeV,,

ow

and define the mapping S; by S;(T, M) = (wy,, , i1 ).

This local dual Schur

complement S; : V, — V. is continuous.

Then the operator S : V) — V,, § = P | P,S;Pr is continuous. It is
compact over L%(y) x L%(y) and symmetric, hence it possesses a family of finite-
dimensional eigenspaces associated with positive decreasing eigenvalues (u+¢);=%
and also a possibly infinite-dimensional kernel, ker(S). Since by construction the
operators S; are isomorphisms, ker(S) = ker(}."_, P,P}). Therefore, the family
chosen of coupling modes naturally splits in two subfamilies :

- The first one is made of the bitharmonic extensions R(wy, ;) of a given number
N, of independent eigenfunctions (wy,#8,) associated with the largest eigenvalues
Heye-

- As for the second one, noticing that

P P P
ker(Y " PPY) = () ker(PiP}) C | Jker(P,P;)
=1

=1 =1

we decide to retain the low frequency content of each subspace ker(P; P;"), namely
the M, first solutions of the auxiliary eigenvalue problem

0%w 0% 00 oy 1 N N
@ [ Grsat ] gmate [ Beorew=¢ [ wrow

o
V (v,%) € H%(y) x H'(v), where ¢ is a small parameter.

p
The biharmonic extensions R(W;,0;;) of these M = ZMi modes (%;;,0;;)
1=1
form the second family of coupling modes. The resulting mode synthesis method
amounts to define the finite-dimensional space

P p

VN = span {U(uij)jy:‘d U(R(we, 60)) 15, U(R(Wz‘j,%))?ﬁl} :
i=1 i=1

for some numbers N;, M;, N,, 1 < i < p, and to perform the Galerkin approxi-

mation of the global eigenvalue problem on this space.

REMARK 1. it is possible to further filter the kernels ker(P;P}) by just solving
the eigenvalue problem (4) again after projection over the solutions of the first solve
and with € = 400

REMARK 2. If the extension operator preserves some locality, this eigenvalue
problem is posed over a limited set of edges, not on the whole interface. Moreover,
since P; only depends on the geometry of the interface and, at the discrete level,
on the mesh, the auxiliary eigenvalue problem (4) does not require any subdomain
solve, and, in practice, proves very cheap.
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FIGURE 1. The extension operator by reflection for H? functions.

REMARK 3. Mode synthesis appears as a non iterative domain decomposition
method contrary to [5], [6]. The proposed method differs from [1] where the Schur
complement is used instead of a preconditioner. It also differs from [4] since the
preconditioner is not used to compute the spectrum of the Schur complement.

The next section is devoted to the construction of the extension operators P;.

3. The extension operators P;: V,, -V,

Let w € V; denote some given function. Its traces (wy,,, are to be

W
on Im)
extended onto the adjacent edges of the interface. First pick out two edges I'; and
I'; of ; that share a common vertex O, and choose an adjacent edge I'sZ;, as in
Figure 1. Parametrize I'; (resp. ', I'3) by the curvilinear abscissa s; € [a, 0] (resp.
s9 € [¢,0], s3 € [0,b]), starting from the vertex O. As in section 2, let (wq,0,1)
(resp. (wa,0n.2)) stand for the traces of w along I'; (resp. I'z). These traces satisfy
the compatibility conditions (2). A pair of traces (w3, 6, 3) is sought on I's in such
a way that the compatibility conditions

w3(0) = w1(0)
W3 _, = W1
5 e Onsiis = —— On a7 t
( ) 883 73 + Un 33 £ T1+0,1m1 & O
. ow, .
hold for every possible value of w;(0), g(@) and 6, 1(0). The resulting traces
1

will then coincide with the traces of a function in H?(w).
The compatibility conditions (5) lead to 5 scalar equations. This is why the
proposed extension operator P; involves 5 parameters to be identified :

ow
Py i’ A = ,on‘ i
(P (0 5,)) = o) it
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(6) { wi(s) = ¢(s) {a—ﬁim(%s) + IBISW1('2§a‘3) + Frwa(ss) + 523W2(%3)}
On3(s) = ©(s) {m3On.1(£5) + 12305 2(55)}
and where ¢ denotes some cut-off function whose support forms a neightborhood
of O.
Expressing the compatibility conditions leads to the linear system A3 X3 = Fy,
where :
a3
B3
X3 =| P
M3
723
1 1 1 0 0
35 T3.x 2y, 0 Cinz . n3.[Ch Z;I + %;—I]
(7) A3 = 5%7-3‘1 0 %73,1 CZ"'J,Q: n3,1[02 Z;: - %22—%]
%Tgiy %Tg’y 0 Clng,y ng,y[Cl z;i + ;;‘?71:]
573y 0 FTay Congy ngy[Coptt — 2]
1
Tie+Cinig
FS = C‘an,m
T,y + Clnl.y
Cin,y
with
Cy = T1,2M2y — T1,yN2 2 Cy = T2,yN2,2 — T2,2T2y

, -
N1 yN2.z — N1,2MN2y N1yN2,z — N1,zN2y
and

.f, Tg7y=7—"g.g’, Tl,g@:ﬁg.f, ngﬁyZﬁg.g, 1§€_<_3

~M

Tox =

From symbolic calculus the determinant is equal to 2%. This system is solved

once and for all, thus yielding the parameters of the extension operator.

This process is repeated for all adjacent edges containing O, and for all vertices.
It follows from (6) that compatibility will also hold among all edges onto which the
original traces are extended. Therefore P; : V., — V, is continuous. Moreover, it is
clear from its definition that P; : L?(vy;) x L*(7;) — L?(y) x L*(~) is also continuous
see [3] for details.

4. Numerical tests

A square plate is decomposed into 9 subdomains and discretized with 15000
dof. Since we focuss on the coupling strategy, a large number of fized interface
modes is used. Notice that only 17 modes of the dual Schur complement and less
than 3 modes of each kernel ker(P; P;*) are sufficient to yield a 1% accuracy on the
first 20 eigenfrequencies (Fig. 2).
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FIGURE 2. (a): The mesh and a typical subdomain, (b): the ac-

14
curacy for N, =17 and M = Z M,; =23

=1

(a) (b)

FIGURE 3. The first mode shape computed with : (a) A global
F.E.M., and (b) Mode Synthesis for N, =17 and M = 23

The mode shapes are also very accurate and smoothness is achieved, mainly
because the extension operators are defined at the continuous level (Fig. 3, 4, and
5).

5. Concluding remarks

A new mode synthesis method is proposed. It can be formulated at the continu-
ous level and at the discrete level. It is based on a generalized Neumann-Neumann
preconditioner. It yields accurate frequencies and smooth mode shapes with a
small number of coupling modes even when the interface exhibits cross-points. Its
numerical analysis remains fairly open. See [3] for details.

References

1. F. Bourquin and F. d’'Hennezel, Intrinsic component mode synthesis and plate vibrations,
Comp. and Str. 44 (1992), no. 1, 315-324.

2. F. Bourquin and R. Namar, Decoupling and modal synthesis of vibrating continuous systems,
Proc. Ninth Int. Conf. on Domain Decomposition Meths., 1996.

, Extended Neumann-Neumann preconditioners in view of component mode synthesis
for plates, (1998), in preparation.

4. J. Bramble, V. Knyazev, and J. Pasciak, A subspace preconditioning algorithm for eigen-
vector/eigenvalue computation, Tech. report, University of Colorado at Denver, Center for
Computational Mathematics, 1995.

3.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



390 FREDERIC BOURQUIN AND RABAH NAMAR

(a) (b)

FIGURE 4. The 20th mode shape computed with : (a) A global
F.E.M., and (b) Mode Synthesis for N, = 17 and M = 23

(b)

FIGURE 5. The 20th mode shape computed with : (a) A global
F.E.M., and (b) Mode Synthesis for N, = 17 and M = 23
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