http://dx.doi.org/10.1090/conm/218/03036

Contemporary Mathematics
Volume 218, 1998
B 0-8218-0988-1-03036-3

Non-overlapping Schwarz Method for Systems
of First Order Equations

Sébastien Clerc

1. Introduction

Implicit time-stepping is often necessary for the simulation of compressible
fluid dynamics equations. For slow transient or steady-state computations, the
CFL stability condition of explicit schemes is indeed too stringent. However, one
must solve at each implicit time step a large linear system, which is generally
unsymmetric and ill-conditioned. In this context, domain decomposition can be
used to build efficient preconditioners suited for parallel computers. This goal was
achieved by [7, 9], among others.

Still, important theoretical questions remain open to our knowledge, such as:
estimate of the condition number, optimality of the preconditioner. This aspect
contrasts with the existing results in structural mechanics, where the subspace
correction framework allows a complete analysis (see for instance [15] and the
references therein). This work is a preliminar step towards a better understanding
of domain decomposition for systems of equations in the context of fluid dynamics.

To this purpose, we study the steady linearized equations, following the ideas
of [6] and [11] for instance. In section 2, we present the derivation of these equa-
tions from the time-dependent non-linear hyperbolic systems of conservation laws.
Symmetrization is also addressed, as well as the nature of the resulting equations.

A classical well-posedness result is recalled in section 3 for the boundary value
problem. An energy estimate allows one to prove the convergence of the Schwarz
iterative method, using the same arguments as [4] for the Helmholtz problem.
This result generalizes those of [6] for scalar transport equations, and [12] for one-
dimensional systems.

. In section 4, we emphasize the difference between the purely hyperbolic case
and the elliptic case, as far as the convergence of the Schwarz method is concerned.
We also mention the influence of the transmission condition on the convergence for
a model problem.

Section 5 deals with the space-discretization of the problem with a finite volume
method and a first order upwind scheme. We propose two different implementa-
tions: a direct one which can be interpreted as a block-Jacobi preconditioner, and
a Schur complement formulation. The latter is all the more useful when used in
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SCHWARZ METHOD FOR SYSTEMS OF FIRST ORDER EQUATIONS 409

combination with the GMRES [14] algorithm. Numerical results are given for the
Cauchy-Riemann equations and Saint-Venant’s equations of shallow water flow.
Finally, conclusions are drawn in section 6.

2. Derivation of the equations

The equations of compressible fluid dynamics are generally formulated as a
non-linear system of conservation laws:

d
(1) du+ Y 0aF*(u)=0.

a=1

Here the solution u is a vector of RP and the fluxes F™ are non-linear vector-valued
functions of u. The equations are posed in R? and the index « refers to the direction
in the physical space.

Suppose that the solution u™(x) at time ¢" is known. We seek a solution u™*!
at time t"*t! = " 4 §t. If the increment du = u™*! — " is small enough, we can
write the following linearized implicit equation:

Su/8t + Y Oa(DuF*(u") u) = =Y 8. F*(u),

D, F* being the Jacobian matrix of the flux F'¢.
The next step consists in writing the non-conservative form, which is valid if
u™ is smooth:

(2) [(1/5t)1d +5 6aDuF"(u")] bu+ > DuF*0,8u=— . F°(u").

Finally, we recall that these equations can be symmetrized if the system of
conservation laws (1) admits a mathematical entropy S (see for instance [8]). We
multiply system (2) by the Hessian matrix D, S of the entropy. The resulting
system takes the following form:

d
(3) Au+ Y A%0qu = f,
with:
(4) A° = Dy S(u™) [(1 /s)Id+ 3 8aDuF“(u")] ,

A% = Dy S(u™) - D F* (™).

The matrices A® are symmetric, but A° may be any matrix for the moment.

In the sequel, we will consider boundary value problems for general symmetric
systems of first order equations of type (3).

When going from the time-dependent system (1) to the steady system (3),
the equations may not remain hyperbolic. The scalar case studied by [6, 17] and
the one-dimensional case studied by [12] are two examples of hyperbolic steady
equations.

The linearized steady Euler equations in 2-D are also hyperbolic in the super-
sonic regime, but become partially elliptic in the subsonic regime (see for instance
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[16]). This aspect dramatically changes the nature of the boundary value prob-
lem. The simplest model exhibiting such behaviour is the time-dependent Cauchy-
Riemann system:

(5) Ou—0u+0,v = 0
v+ 0,v+0,u = 0,

which becomes purely elliptic after an implicit time-discretization. This system
therefore retains some of the difficulties involved in the computation of subsonic
flows.

3. A well-posed boundary value problem

Let Q be a domain of R? with a smooth boundary Q. If n = (ni,...,nq)
is the outward normal vector at z € 91, we denote by A4, = Y A%n, the matrix
of the flux in the direction n. This matrix is real and symmetric, and therefore
admits a complete set of real eigenvectors. We define A} = P71A+P with At =
diag(max{\;,0}). Similarly, A, = P~!A~P with A~ = diag(min{);,0}), so that
A=A+ A

Next, we introduce a minimal rank positive-negative decomposition of the ma-
trix A,. Let AP°®(respectively A”“9) be a symmetric positive (resp. negative)
matrix such that 4, = AP°® + A9 and rank(AP°®) = rank(A;), rank(AP®9) =
rank(A,,). The simplest choice is of course AR® = A} and A'® = A,: it corre-
sponds to a decomposition with local characteristic variables, which is also the first
order absorbing boundary condition (cf. [5]). In the scalar case (p = 1), A9 = A,
is the only possible choice.

With these notations, we can define a dissipative boundary condition of the
form:

(6) Ar9y = A9 on 0N

In the scalar case, this condition amounts to prescribing the boundary data only
on the inflow boundary. ,

With some regularity and positivity assumptions, one can prove the following
theorem:

THEOREM 1. Let f € L*(Q)? and g such that [, Al®9g - g < oo be given.
There exists a unique solution u € L?(Q)P, with 3 A%0qu € L*(Q)P, such that

. Au+Y A%Ou = f inQ
(M A9y = An®9g  on OQ.

The solution satisfies the following estimate:
1
® Colloulis + [ 420U < Il = [ 4%
0 Co o0

Proof: We refer to [10] and [1] for the proof in the case where g = 0. See also
[6] for the scalar case. The general case (g # 0) is addressed in [3].
4. The Schwarz algorithm

For simplicity, we consider a non-overlapping decomposition of the domain :
Ui<cicny Qi = Q. We will denote by I'; ; = 9Q; N 0Q; the interface between two
subdomains, when it exists. If n is the normal vector to I'; ;, oriented from §; to
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Q;, we set A, = A; ;. Hence, A; j = —A;;. We can decompose the global problem
in  in a set of local problems:

Aoui + ZA“@aui = f iny
A9y, = A9g on 0N U OQ;,

which we supplement with the transmission conditions:

ne __ Aneg neg, __ sneg
Aingu,‘ = Ai,j Uj Aj,i U; = Aj,i u; on Fiyj.

We now describe the classical Schwarz algorithm for the solution of these trans-
mission conditions. We make use a vector U* = (u¥,...,u%) of local solutions. Let

U° be given. If U* is known, U**! is defined by:
AUt L ST 4G = f in @y

9) Aﬁegu;:"'l = A% on 0QN O,
ne +1 ne
AT = AW} onTy.

Inequality (8) shows that the trace of the solution uf satisfies

pos . .
ZAn uj - u; < 00.
89,
k+1

The trace of uf on I'; ; can therefore be used as a boundary condition for u; ™",
which ensures that the algorithm is well defined.
The Schwarz method converges if each u¥ tends to the restriction of u to ; as

k tends to infinity. More precisely, we can prove the following theorem:

THEOREM 2. The algorithm (9) converges in the following sense:

lefllz =0, Y A%BaefllL2 — 0,

k

where €¥ = u — uF is the error in subdomain Q;.

Proof: The proof is similar to [4] (see also [11]). See [3] for more details.

5. Examples

5.1. Example 1: the scalar case. In the case of decomposition in successive
slabs following the flow (see Fig. 1), it is easily seen that the Schwarz method
converges in a finite number of steps. The Schwarz method is thus optimal in this
case but the parallelization is useless. Indeed, the residual does not decrease until
the last iteration: the sequential multiplicative algorithm would be as efficient in
this case. This peculiar behaviour is due to the hyperbolic nature of the equations
and would also occur for the linearized Euler equations in one dimension and for
2-D supersonic flows.

5.2. Example 2: the Cauchy-Riemann equations. Here the convergence
is not optimal but the error is reduced at each iteration. In the case where the
domain R? is decomposed in two half-planes, the convergence of the Schwarz method
can be investigated with a Fourier transform in the direction of the interface, see
[3]. This computation shows that the Schwarz method behaves similarly for this
first order elliptic system as for a usual scalar second order elliptic equation. It is
possible to define an analogue of the Steklov-Poincare operator in this case, which
is naturally non-local.
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FIGURE 1. Decomposition of the domain for a transport equation.
In this case, convergence is reached in exactly N steps, where N is
the number of subdomains.

As mentionned in section 3, any decomposition A = A™9 4+ AP°® with minimal
rank leads to a dissipative boundary condition A9y = A™9g. For the Cauchy-
Riemann equations (5), there is a one-parameter family of such decompositions. In
the case where n = (1,0) for instance, we may take:

A9 — — cosh? © —sinh ¢ cosh g
~ \_ —sinh ¢ cosh ¢ —sinh? ’

for any real number ¢. The computation of the spectrum of the Schwarz method in
this case shows that the convergence is optimal when ¢ = 0, i.e. when A9 = A~
This case corresponds to the first order absorbing boundary condition [5]. The
optimality of this kind of transmission conditions has been first recognized by [11]
in the context of convection-diffusion equations.

6. Numerical results with a first order implicit finite volume scheme

6.1. Finite volume discretization. We consider a triangulation of Q2. For
simplicity, we will assume that £ C R?, but the extension to R® is straightforward.
If K is a cell of the triangulation, the set of its edges e will be denoted by K. |K]|
is the total area of the cell and |e| the length of edge e.

We seek a piecewise constant approximation to (3), ux being the cell-average
of w in cell K. The finite volume scheme reads:

(10) |K|Aouk + Z le] D5 = | K| fc.
e€OK

In problems arising from a non-linear system of conservation laws, we use the
implicit version of Roe’s scheme [13], written in the usual non-conservative form:
(11) OF (uk,ug) = Ay fus —ukl, O (uk,ug) = Atfug — uxkl,

if e is the common edge between K and J, with a normal vector n oriented from K
to J. The averaged Jacobian matrix A, is computed from the preceding time-step
and must satisfy Roe’s condition:

An(ug,ug)[ug —uk] = [Fa(us) — Fo(uk)].

When this condition holds, the implicit scheme (11) is conservative at steady-state.
Note that in the linear case with constant coefficients, (11) is equivalent to the
classical first order upwind scheme:

@f(uK,uJ) = —‘I)e‘] =A uy+ A:’UK.
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6.2. Boundary conditions. The boundary conditions defined by local char-
acteristics decomposition, namely A, u = A g are naturaly discretized by:

o, = (I)(UK,ge) = Ar_L[ge - UK]’

if e is an edge of cell K lying on the boundary. For general dissipative bound-
ary conditions of the type A9y = Al*9g, one can use a different scheme at the
boundary: this modification is linked to the so-called preconditioning technique,
see [16, 3] for more details. An alternative will be described in the sequel.

6.3. The Schwarz method. It is easily seen that the Schwarz method, dis-
cretized by a first order upwind scheme can be interpreted as a block-Jacobi solver
for the global linear system. The local problems in each subdomain leads to a lo-
cal sub-system, which can be solved with a LU factorization of the corresponding
matrix block.

Alternatively, a substructuring approach is possible. In finite element appli-
cations, this approach consists in eliminating all interior unknowns and writing a
condensed system involving only the unknowns at the interfaces. The resulting
matrix is the so-called Schur complement. The dimension of the condensed linear
system is much lower than that of the initial system. This is especially interesting
with GMRES, as all intermediate vectors of the Krylov subspace have to be stored.

However, the unknowns at the interfaces do not appear explicitly in the finite
volume discretization. Rather, they are reconstructed from the interior values. To
bypass this difficulty, we propose to introduce redundant unknowns at the interface.
Namely, if e is an edge lying on an interface, we define u. by:

(12) Ajue = A ug,  Afue=Atu,.
The flux at the interface is thus:
X = A~ [u, — uk], &) = Al [uy — ue).

Thanks to this formulation, we can solve all the interior unknowns ug in terms of
the redundant unknowns u..
With the latter formulation, one can easily implement transmission conditions

of the type A9y = Al®9¢: the definition of the interface-based unknowns simply
becomes:

A9y, = Ar¥uk, APSy, = APy,
This formulation has been used for the Cauchy-Riemann equations to verify the
results of the preceding section.

7. Numerical results

7.1. Cauchy-Riemann equations. We first present some numerical results
for the Cauchy-Riemann equations (5). The computationnal domain is the unit
square [0, 1] x [0, 1], with homogeneous boundary conditions A, U = 0 on the bound-
aries ¢ = 0 et z = 1, and periodic boundary conditions in the y direction. The
subdomains consist of parallel slabs [I;,1;+1] % [0,1] of constant width. Note that
a “box” decomposition ([l;,l;41] x [L;, L;+1]) is possible and would lead to similar
results.

The value of 6t is 10%, and the left hand side is (sin(47x) cos(47my),0). The
meshing is 40 x 40. The stopping criterion for the iterative procedure is an overall
residual lower than 10710, The corresponding number of iterations is given in Table
1. This result shows that the Schwarz method is indeed convergent. The linear
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TABLE 1. Schwarz method for the Cauchy-Riemann equations.

Number of Subdomains | Iterations
2 61
4 63
5 65
8 70
10 76

10"5.,.|....|....|....|..,.|
107 §

10%

Residu

10°

101 £ ]
; —t =0 X

a2 b ¢=0.5 1
10 E | #— o=1 3
é_ o—o ¢=2 -%

FT ) S P T S S BRI N -

5 10 15 20 25
Iterations

FIGURE 2. History of the residual, Schwarz method for the
Cauchy-Riemann equations. The case ¢ = 0 corresponding to
the absorbing boundary condition yields the best convergence.

growth with the number of subdomains is a usual feature of one-level Schwarz
methods.

For practical applications, it is preferable to use the Schwarz method as a
preconditioner for a Krylov subspace method.

7.2. Acceleration via GMRES. From now on, we use the Schwarz method
as a preconditioner for GMRES [14]. With this approach, the number of iterations
required to reach convergence for the Cauchy-Riemann system is typically of the
order of 20 (see Fig. 2). This contrasts with the 60 iterations needed for the
Schwarz method alone.

The main issue now becomes the condition number of the method. As explained
in the preceding section, the transmission conditions have a significant impact on
the behaviour of the method. Figure 2 shows the history of the residual for several
transmission conditions of the type A™9u; = A™*9u; with two subdomains. The
best behaviour is clearly obtained with ¢ = 0, i.e. with the first order absorbing
boundary condition.

7.3. Saint-Venant’s equations. We now apply the preceding ideas to the
computation of smooth, non-linear, steady-state flow. The proposed problem is a
two dimensional shallow water flow over a bump.
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TABLE 2. Schwarz method, Shallow water problem: iterations for
several decompositions.

| Decomposition | Iterations |

1x2 23
1x3 29
1x4 35
2 x 2 25
2x3 38
3x3 37

The Saint-Venant equations read:
Oth + 0y (hu) + O0y(hv) = 0
Ochu + 0z (hu® + gh*/2) + 0, (huv) = —ghl.q
Othv + 0z (huv) + 8, (hv* + gh?/2) = —ghd,q.

Here h is the water depth, (hu,hv)T isthe momentum vector, and q(z,y) is the
given height of the sea bottom. The equation of the free surface is therefore h + gq.
The construction of Roe’s matrix for this problem is classical. The treatment of
the source term follows the work of [2]: at the discrete level, we simply end up with
a right hand side in the linear system.

The test case is a subsonic flow over a circular bump, with a Froude number
of approximately .42. The computational domain is the unit square and a first
order absorbing boundary condition is imposed at the boundary. The mesh size
is 60 x 60 and the time step is such that 6t/6z = 10%. A steady-state solution is
reached within 5 time steps.

The Schwarz method is used with GMRES. Table 2 gives the number of it-
erations required to decrease the residual by a factor of 10719 for several decom-
positions of the computational domain. The decomposition referred to as “i x j”
consists of 7 subdomains in the x direction and j subdomains in the y direction. For
instance, 1 x 4 and 2 x 2 refer to a decomposition in 4 slices or boxes respectively.

These results show the applicability of the method to the solution of compress-
ible flows. The growth of the iterations with the number of subdomains seems
reasonable.

8. Conclusion

We have considered linear systems of first order equations. A Schwarz iterative
method has been defined and the convergence of the algorithm has been studied.

Numerically, a first order finite volume discretization of the equations has been
considered. A Schur complement formulation has been proposed. The influence of
the number of subdomains and of the transmission condition has been investigated.

Finally, we have shown the applicability of the algorithm to a non-linear flow
computation. We have used the linearly implicit version of Roe’s scheme for a
two-dimensional shallow water problem.

A better preconditioning might however be necessary for problems in 3-D or
involving a great number of subdomains. For this purpose, a more complete numer-
ical analysis of domain decomposition methods for first order systems is needed.
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