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1. Introduction

Finance is one of the fastest growing areas in modern applied mathematics
with real world applications. The interest of this branch of applied mathematics is
best described by an example involving shares. Shareholders of a company receive
dividends which come from the profit made by the company. The proceeds of the
company, once it is taken over or wound up, will also be distributed to shareholders.
Therefore shares have a value that reflects the views of investors about the likely
dividend payments and capital growth of the company. Obviously such value will
be quantified by the share price on stock exchanges. Therefore financial modelling
serves to understand the correlations between asset and movements of buy/sell
in order to reduce risk. Such activities depend on financial analysis tools being
available to the trader with which he can make rapid and systematic evaluation of
buy/sell contracts. There are other financial activities and it is not an intention of
this paper to discuss all of these activities. The main concern of this paper is to
propose a parallel algorithm for the numerical solution of an European option.

This paper is organised as follows. First, a brief introduction is given of a
simple mathematical model for European options and possible numerical schemes
of solving such mathematical model. Second, Laplace transform is applied to the
mathematical model which leads to a set of parametric equations where solutions
of different parameteric equations may be found concurrently. Numerical inverse
Laplace transform is done by means of an inversion algorithm developed by Stehfast
[4]. The scalability of the algorithm in a distributed environment is demonstrated.
Third, a performance analysis of the present algorithm is compared with a spatial
domain decomposition developed particularly for time-dependent heat equation.
Finally, a number of issues are discussed and future work suggested.

2. European Options

One simple and interesting financial model known as the European Option has
two types of contracts available namely, call options and put options. The holder
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of a call option has the right, at a prescribed time known as the expiry date, to
purchase a prescribed asset for a prescribed amount usually known as the strike
price. While the other party of the contract must sell the asset if the holder chooses
to buy it. On the other hand, the holder of a put option has the right, at the expiry
date, to sell the prescribed asset at the strike price. While the other party of the
contract must buy the asset if the holder chooses to sell it [6]. This section only
examines a European call option. The stochastic background of the equation is not
discussed in this paper and readers should consult [6].

Let v(z,t) denotes the value of an option where z is the current value of the
underlying asset and t is the time. The value of the option depends on o(t), E,
T and r(t) which are, respectively, known as the volatility of the underlying asset,
the strike price, the expiry time and the interest rate. The Black-Scholes analysis
for one independent variable leads to the famous Black-Scholes equation [6],

2

(1) %4‘%02.’52% +rx%—rv=0 eqQt

where O = {z : z > 0}. In order to describe a European call option, boundary
conditions and final conditons are required. Since the call option is worthless at
x = 0 even if there is a long time to reach expiry, therefore it is sensible to have
v(0,t) = 0. Since the asset price increases without bound, therefore it becomes
likely that the option will be exercised and the magnitude of the strike price
becomes less important. Therefore it is sensible to have v(s,t) ~ s as s — 0.
At expiry, if > F then one should exercise the call option, i.e. to hand over an
amount E to obtain an seest with . However, if x < E at expiry, one should not
exercise the call option. Since the expiry date is in the future, the final condition
v(z,T) = max(xz — F,0) must be imposed. The solution v for t < T' is required.

The financial interpretation of the above model is as follows. First, the
difference between the return on an option portfolio, which involves the first two
terms, and the return on a bank deposit, which involves the last two terms, should
be zero for a European option. Second, the only parameter that affects the option
in a stochastic way is the volatility o(¢) which measures the standard deviation of
the returns.

Since (1) is a backward equation, one can transform it to a forward equation
by using 7 =T — t and it leads to,

2
(2) % = %asz% + mg—i -rv €N
subject to boundary conditions v(0,7) = 0 and v(s,T) ~ s as s — oo and initial
conditions v(z,0) = max(z — E,0).

An analytic solution may be derived if a change of variable is made where the
Black-Scholes equation is converted to a time-dependent heat conduction equation
with constant coefficients [6]. However a field method, such as finite volume
methods, is of more interest for two reasons. First, there are many examples in
multi-factor models such that a reduction of the time dependent coefficient to a
constant coeflicient heat equation is impossible. Hence analytic form of solutions
cannot be found. Second, the computational environment at Greenwich is based on
the finite volume code PHYSICA [1] which is the main research and development
code for multi-physics work. The code has capability of solving unsteady diffusion,
convection and radiation type of equations. Financial modelling typically requires
large number of simulations and hence computing resources and efficiency of
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algorithms are very important in order to make evaluation and decision before the
agreement of a contact. With the present day high performance computing and/or
distributed computing, parallel algorithms offer efficient numerical solutions to the
equation given by (2).

3. Time Domain Decomposition

For time varying o(t) and r(t), it is possible to make suitable coordinate
transformation to the Black-Scholes equation in order to obtain a time independent
like heat equation [6]. Hence the method describes in this section may then be
applied. Here, a method is described which focuses on time independent coefficients
o and r. Taking Laplace transform of (2) and taking integration by parts to the
left-hand-side of the transformed equation, one obtains the parametric equation

(3) 50T @+rx%—(r+)\j)u:v(z,0) e Nt
subject to boundary conditions u(0; A;) = 0 and u(s; ;) = /\i? Here u(z, A;) is the

Laplace transform of v(z,t) and \; is a discrete set of transformation parameters
defined by

(4) )‘]:.7_’.7:17271777'
T

where m is required to be chosen as an even number [5]. An approximate inverse
Laplace transform [4] may be used to retrieve v(z,t) according to

In2 &
(5) v(z,T) ~ — iju(x,)\j)
j=1
where
min(j,m/2) m
wp = (O D 2 k'k']lz /21(2vk?! 2k = )]
w2 (M2 = F)kl(k = 1 — k)I(2k - 5)!

is known as the weight factor. Each of the above m parametric equations may be
rewritten as
d odu d

(6) dw(%crzx . + E((T —ozu) - (2r —o? + Aj)u = v(z,0)

The computational domain has a uniform mesh and finite volume method is applied
to (6) which leads to

1, ,d
(7) /(502x2£ + (r — o®)zu)ds — / (2r — 0% + \j)udQ = / v(z,0)d
s Q Q

The resulting system of linear equations is solved in a local area network which
consists of P workstations. There are two possible implementations as follow.
First, the solution at a particular time 7 is being sought. For the case when
m = P, one would expect ideal load balancing. The total computing time, t4,,
using the present scheme can be estimated as t4 = t; + t,/P where t; is the
computing time for solving one parametric equation and ¢, is the corresponding
computing time for numerical inverse Laplace transforms given by (5) and is
assumed to be equally spreaded across the P workstations. For the case when
m > P, one would expect just a slight out of load balance for the reason that m is
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possibly not an integral multiple of P. It is possible to estimate the total computing
time as

(8) ta, =[5t +ta/P

The case m < P is not of interest because the active workstations become a subset
of the local area network.

Second, the solutions at P particular times 74, k = 1,2,---, P are being
sought. In this situation, each workstation looks after the solutions of m parametric
equations and the corresponding inverse Laplace transform at a particular time 7.
Hence the total computing time, t4,, may be estimated as

(9) ta, = mt) +1t,

In order to check the scalability of the algorithm, a cell-centred finite volume
scheme is applied to the constant coefficient heat equation,
(10) V2u=%%€—1<x<1 -1<y<1
subject to unit boundary conditions along the whole boundary and zero initial
condition. A uniform 16 x 16 grid where the set of discrete equation is solved by
Gauss-Seidel iteration. Solutions at eight time values, 7 = 0.1, 0.2, 0.5, 1, 2, 4,
10 and 20, are sought. For the purpose of demonstration, a network of 4 T800
transputers were used as the hardware platform. The computing times for P = 1,
2 and 4 are respectively 2537, 1309 and 634 seconds. The speed-up ratio for using
two and four processors are thus 1.94 and 4 respectively. More results about this
test problem can be found in [2] and experience shown in the paper suggests that
m = 8 provides sufficient accuracy for the model test. Note that the value of m
determines the accuracy of the inverse Laplace transform and hence it depends on
the mesh size or the number of grid point. In general, m = /N /2 where N is the
total number of grid points in a two-dimensional problem [2]. Note also that the
scalability property as shown in this section also applies to eqn (6).

4. A Comparison with Spatial Domain Decomposition

In order to find out the suitability of the proposed algorithm for a distributed
computing environment, a comparison with a spatial domain decomposition method
is examined in this section. The spatial domain decomposition method is similar to
the one developed by Dawson et al [3] for unsteady heat conduction equation. The
problem described in (2) is partitioned into P subdomains so that a coarse mesh
of mesh size H = s/P is imposed with interior boundary of the subdomains being
the same as the nodal points of the coarse mesh. In order to determine the interior
boundary values of each of the subdomains, an explicit scheme derived from using
a central difference method along the spatial axis and a forward difference method
along the temporal axis is as follows,

PPV At

v = (2 %ﬁ leH

At

nl
2H)

1 At
)zn11+( 2a? +rr; i+1

zHQ

(11) +(1 - 023312% —rAt)uP !
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Here subscripts i denote the mesh points on the coarse mesh and superscripts n
denotes the time step at ¢ = nAt. The choice of At must satisfy the coarse grid
restriction for an explicit scheme which is

2.2

(12) At < n;iln(UHa;i +7) < (0P = 1)2 4 1)7!

Note here that At should be of the order of h? where h is the grid size of the fine
mesh. Therefore the total number of time steps involved in the present calculation
is T(o?(P - 1)% 4 1).

It is reasonable to assume that the computing time for obtaining the solution
at a new time step using the fine mesh and a finite difference scheme is the same
as the computing time for obtaining the solution of a parametric equation given
in (3). Therefore the computing time for marching one time step forward using
the classical spatial domain decomposition with P subdomains on P processors is
t1/P. The total parallel computing time can be estimated as

2 2 t ty
(13) tg=T(c*(P—-1)"+7) P + P)
where t, is the overheads for obtaining interior boundary conditons and is assumed
to be equally spreaded across the P workstations.

It is natural to require t 4, < tp for any advantage of the proposed time domain

decomposition scheme to be happened when comparing with the classical spatial
T(a7(P-1)2+r)t
P

domain decomposition, and hence one would require [%5]t; < 1, Le.

m, T(*(P-1)%+r)
(14) f;] < Iz
When m is an integral multiple of P, one obtains
(15) m < T(o*(P-1)*+7)

In other words, one requires the number of parameters in inverse Laplace
transforms to be smaller than the number of time steps involved in spatial domain
decomposition. Note that the dominant term in the inequality is obviously T. Since
typical values of m is usually much smaller than s/h for an acceptable accuracy
of inverse Laplace transform [2], the inequality (15) is easily satisfied with typical
ranges of 0.05 < ¢ < 0.45 and 0.6 < r < 1.1. Therefore for a given value of P, the
inequality offers only a very mild restriction. Hence the time domain decomposition
method proposed in this paper has advantage over the classical spatial domain
decomposition method for European call options.

From (15), we have mt; < T(c?(P — 1)*)“ which combines with (13) to give

T(o*(P-1)2+7)
P

to,
(16) P <

The ratio governs the number of time levels 74 to be allowed in each workstation
in order that the inequality t4, < tp remains valid. Supposing each parametric
equation has N grid points involved in the discretisation, the total number of
floating point operations involved in (5) can be easily counted as 2N + Nm. Also,
supposing some of floating point operations in (11) can be done once for all, the total
number of floating point operations for the update of interior boundary conditions
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is counted as 18 P. Hence (16) become

18T
(17) m < 7V—(02(P —1)%+7r)-2
It can be checked that the inequality is easily satisfied with the above typical ranges

of o and 7.

5. Conclusions

A vparallel algorithm based on Laplace tranform of the time domain into a
set of parametric equations is developed for European call option. Distributed
computing may be applied to solve the parametric equations concurrently. An
inverse Laplace transform based on Stehfast method is applied to retrieve the
solution. The method is compared with classical spatial domain decomposition.
A preliminary analysis shows that the proposed method has advantage over the
spatial domain decomposition method.
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