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1. Introduction

Within the finite element framework, we deal with large-scale eigenvalue
problems induced by free vibration analysis of complex structures. The classical
approach for the solution of such problems consists first of reducing the number of
unknowns, allowing to reduce the computational cost of eigensolver, because only
the lowest eigenfrequencies are classically researched in modal analysis. Component
mode synthesis (CMS) or dynamic substructuring methods are appropriate tools
for this reduction. In this paper we will discuss about the parallel implementation
of CMS methods. We consider, in particular, among several CMS methods [4],
the fixed-interface method which we briefly recall. Assuming that the studied
domain is partitioned in N, non-overlapping substructures, the global solution
of the eigenvalue problem to be solved in the domain can be written as the
sum of the local solutions (fized interface modes) to elasticity eigenproblem to be
solved in each subdomain clamped on the interface, and extensions (constraint
modes or coupling modes), in each subdomain, of functions which represent the
motion of the interface. The dynamic behavior of the global structure can be
approximated in the low frequencies range by truncating the series which represent
the different spaces. It remains to define what kind of Dirichlet’s conditions has
to be prescribed for the coupling of the substructures. The most classical choice
[3] consists of prescribing at the discrete level the shape functions spanning the
interfacial interpolation space. In this case, all the motions of the interface are
represented, but, the number of constraint modes is equal to the number of degrees
of freedom (d.o.f.) of the interface. From the parallel point of view the constraint
and the fixed interface modes can be computed independently in each subdomain.
An other choice, proposed by Bourquin [1], consists of filtering information in
order to represent the interface’s motion only in the low frequency range, thanks to
a spectral decomposition of the interface operator coupling subdomains. However,
the computation of the coupling modes involves all the subdomains. We propose a
parallel implementation of these methods [5] thanks to the use of techniques arising
in domain decomposition.
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The paper is organized as follows : Section 2 presents different parallel
implementations of the Craig and Bampton (CB) method, one of them enabling
to avoid the costly computation of the constraint modes. Section 3 describes some
fixed interface methods using coupling modes. In Section 4, some numerical results
obtained on the Intel PARAGON machine are presented. We also compare, from the
cpu time point of view, the results obtained thanks to a parallel sparse eigensolver.

2. Parallel implementation of the Craig and Bampton method

The model reduction of each substructure (s) is given by the projection of local
mass (M®)) and rigidity (K(*)) matrices onto the Ritz basis :

(s) (s) . N
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where the subscripts i and b respectively refer to the internal and boundary d.o.f.,
n®) is the vector of normal modes intensities, ¥(*) and ®(*) are respectively the
constraint and fixed interface modes. By assembling the model reduction of each
substructure we get the following reduced eigenproblem :

(1) Kz=\Mz
with the reduced rigidity (K) and mass matrices (M) given by :
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The reduced stiffness matrix includes Schur complement matrix (S) and Qﬁf)z
which is a diagonal matrix storing the squares of the subdomains eigenvalues.
The reduced mass matrix includes static condensed mass matrices and the inertia
coupling between the constraint and fixed interface modes. The size of (1) is equal
to the sum of the number of fixed interface modes, chosen in each subdomain,
and the interface’s number of d.o.f. (which in the case of complex structures
is large). This "reduced” eigenproblem is still too large to take benefit from
eigensolver such QR’s method and claims the use of subspace algorithm (Lanczos,

. ). The generalized eigenproblem is then reduced to a standard form and
involves matrix-vector products with K~'M. Different implementations have been
studied in order to reduce the computational cost thanks to the use of parallel
machine with distributed memory. The first one (solver I), is the most natural,
because it uses the fact that fixed interface modes and constraint modes can be
computed independently in each subdomain. Then, a processor is on charge of
a subdomain and the local reduced matrices are built in parallel. However the
reduced eigenproblem (1) is assembled and solved in sequential way. The second
one (solver II), looks like Hybrid Craig and Bampton method, proposed by Farhat
and Géradin [7], but consists in a primal formulation. The Schur complement
matrix is not assembled and the action of S~! on a vector is done by using iterative
Schur complement method [8] with different acceleration techniques [5] (generalized
Neumann-Neumann preconditioner, technique for taking into account multiple right
hand sides, ... ). The main task, consists in the computation of the constraint
modes in order to build M. This operation may be avoid. For this purpose a
third method (solver III) allows for the computation of matrix-vector products
with reduced mass matrix in a implicit way. The details of this operation are as
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follows. The product M(*)2(*) (with any vector z) can be written in matrix form

as :
I )" ) gls) zis)
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The description of the algebraic operations requires the knowledge of the different
components of this vector, without any explicit assembling of the matrices
(@ M w©)) WO M) w©) (@O ME) $O)] First of all, for each
subdomain, the following matrix-vector product is computed :
3 Mz'(iS) Mi(;) o) ] _ Mi(i8)¢(s)
(3) () 2,0 0 | =1 A
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Then, at each iteration of a given eigensolver, the operations described below are
done :
Computation of U(®)" p(s) @) (%)
1. Compute M) ¢(*)2{*) with (3).
2. Solve Dirichlet’s problem in Q) with zero on I'®) (interface with other
subdomains) and external force :

&) gels) ) 9) 4 (s) (9)
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3. Compute the forces induced by the opposite displacement, solution of (4) :
s —'K(S);IM(S) (S)Z(S) s s)7! 8) 1(s) (8
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4. Compute MV ¢z with (3).
5. Assemble interface’s contributions of vectors obtained at the two previous steps :

(6) {(MPe2) — KPS ME 6054 |

i1

Computation of ()" M() W) 5{*)
1. Solve Dirichlet’s problem in Q(*) with zgs) on T'(®)

" ko w0 ) ) g

O R T
2. Compute the matrix-vector product, the local mass matrix M (), solution of
problem (7) :

s s)~ ! s s s s)7! s s s
(8) lMi(i) Mz'(lf)] { _Ki(i) Ki(b)zé ) }:{ (_Mi(i )Ki(i) Ki(b) + Mi(b)) zé : }
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3. Solve Dirichlet’s problem in Q%) with zero on I'®) and external forces :

() el 9 9 (91 (s .
Ky K 0 0
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4. Compute the forces induced by opposite displacement, solution of (9) :

-1 -t s s s
[KIE.S) Kéz) ] { (Ki(f) Mi(z'S)Ki(z's) Ki(b)—Kii M )) gs) }
g 0
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5. Assemble interface contributions of vectors (10) and (8). We get then :

-1 -1 —1
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Computation of & M) (s)

1. Computation of the forces arising from the solution of (7) :
[ ¢(3)TM.(§) ¢(s)TM(;) ] _Kz(zS) (I){z(b) é)
1 2 Zzs
(1) R Sy SRR YRR

The reduced matrix-vector product is achieved through the assembling of the
contributions of each subdomain. Let us note that all the matrices (except the
mass matrix) are already used by the iterative Schur complement method.

3. Fixed interface methods with coupling modes

With regard to the previous method, a small set of modes is required for the
coupling of the substructures. The new Ritz basis [1] is indeed defined by :

(s) s s)71 s
{uz’s)}z [q>(s) \I;(s)] {77(6) } with ¢(S):R(S)¢ and U = ["Kz(z) f'( 11)(3)]
U, P
where ¢ are the first normal modes of the Schur complement matrix (interface
modes), R(®) is the restriction matrix of the global interface (') to the local interface
(T($)), £ is the vector of the coupling modes intensities and ¥(*) defines the coupling
modes. Thanks to this definition of coupling modes, K is diagonal, and the size
of the reduced eigenproblem is equal to the sum of the number of fixed interface
modes chosen in each subdomain and the number (Nr) of coupling modes. Then,
the solution of the reduced eigenproblem is easy. The difficulty is now to find
the first normal modes of the interface’s operator, in the present case the Schur

complement matrix (method 1) with or without mass condensed matrix (denoted
by B).

1
(12) SUF = /\[*BU[‘ - S~ IBUF = )\—UF
r

From the computation view point, the method presents an interest, when the
interface is large, only if the Schur complement is not assembled. Once again, the
iterative Schur complement method (S is not explicitly inverted) is used. Various
acceleration techniques have been used to reduce as best as possible the cost of
this operation (Section 2). We have considered different mass matrices : identity,
lumped (B = 3, Mélf)) and static condensed mass matrix. For the latter, the
matrix-vector product can be done without any assembling operation (Section 2).
Nevertheless, the computation of the first normal modes of the Schur complement is
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a costly operation. The use of an approximated inverse [2] (method 2) of the Schur
complement matrix (such that T~ S~1) avoids to consider an iterative method,
because only matrix-vector product with T" are then required.

1
(13) TBuI = —ur
Ar
A good inverse of the Schur complement matrix is clearly the Neumann-Neumann
preconditioner, written here in its basic form :

Ns
(14) T = Z R(S)Ts(s)_lR(s)
s=1

For sake of generality, it would be required to take into account decompositions with
cross-points and floating subdomains. In the case of cross-points, [2] defines a new
extension operator (reflection and cut-off function) which possess an interpretation
at the continuous level. We propose to improve (14) by averaging the contributions
of each subdomain through the introduction of weighting matrices [8]. On the
other hand, the global problem can be well posed (no rigid body modes), but
the decomposition may lead to local Neumann’s problems not well posed (no
Dirichlet’s conditions). Shifting [2] the global problem enables to erase the floating
subdomains, however one can also handle directly with them thanks to a filter
operator which stems from balancing method [9]. Finally, the approximated inverse

is given by :
N, .

(15) T=(I-G(G"SG)'G"S)Y R pg)” plIRe)
s=1

where P(®), stands for the weighting matrix, defined such that 3> P() =1 r, G is
the rectangular matrix which stores the interface restriction of the local rigid body
motions, and S()™ is the inverse of the projection of the image of S(*) in RVisron() ,
where N, denotes the local interface size. Let us note, that the rigid body
motions have to be also considered as coupling modes because, by construction,
they are perpendicular to ur.

4. Numerical results

In order to present some numerical experiments, we consider a three-
dimensional beam. The finite element discretization consists in 3000 hexahedral
Q1-Lagrange elements (11253 d.o.f.); the mesh is cut in 8 boxes (2x2x2); the size
of the interface is thus large (2253 d.o.f.) and each substructure possess 1728 d.o.f.
Ten eigenpairs are required. The computation is carried out on 8 nodes of the Intel
Paragon.

Table 1 reports the cpu times of the main tasks of the CB’s method. As we can
see, with solver III, the cpu time compared with that of solver I is reduced of 65%.
Concerning the method 1, we plot (Fig.1) the relative error committed on the global
eigenfrequencies versus the number (Nr) of coupling modes. We have compared
the results for different mass matrices, used during the computation of the coupling
modes. For static condensed mass matrix the improvement is obvious : with 10
coupling modes, the relative error is less than 1%. With lumped and identity
mass the graphs are nearly the same, but more coupling modes are included in the
approximation’s space to get the same relative error. To understand these results,
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TABLE 1. 3d beam (2-2-2) - cpu times of the parallel
implementations of the Craig and Bampton method

constraint modes
with without
solver I | solver II | solver III

constraint modes 80,2s 80,2s [
fixed interface modes 90,4s 90,4s 90,4s
assembling reduced eigenproblem | 267,7s | 133,9s 0
solving reduced eigenproblem 70,1s 71,3s 86,8s
restitution 0,6s 0,6s 1,6s
total 508,8s 376,2s 177,2s

TABLE 2. 3d beam (2-2-2) - method 1 - coupling modes computing

Mass Identity Lumped Static condensed
Nr 20 30 20 30 20
Lanczos 117,2s | 167,2s | 126,9s | 176,7s 138,2s
Matrix (mass)-vector | 0,007s | 0,01s | 7,9s 10,9s 24,7s

TABLE 3. 3d beam (2-2-2) - cpu times

solver III | method 1 (Nr = 15) | method 2 (Nr = 25) | parallel sparse eigensolver
177s 190s 130s 97s

we plot (Fig. 2) the spectrum of the Schur complement matrix with different mass
matrices along the interface. As we can see, the spectrum of the Schur complement,
when static condensed mass is used, is very closed to this of the global structure.
Then, knowing the excitation’s range of the global structure it seems possible to
define a by-passing frequency criterion, allowing to select enough coupling modes
during their computations to get a good approximation of the global eigenvalues.

Table 2 reports the cpu times corresponding to the main operation
(method 1) : the computation of the coupling modes. Taking into account the static
condensed mass is not too expensive. Despite the use of acceleration techniques
(Fig. 3) (such as coarse grid induced by rigid modes, preconditioner, techniques
enabling to take into account multiple right hand sides), the computation of the
coupling modes remains a cpu times consuming operation.

Now we compare (Table 3) the cpu times required to find 10 eigenpairs
with different techniques. From the cpu times point of view, despite the
different implementations proposed, in particular for the CB’s method, parallel
sparse eigensolver [6], based on Lanczos algorithm and nonoverlapping domain
decomposition method, is the fastest method. This result was predictable because
in the three methods (solver III, method 1 and parallel sparse eigensolver) the same
interface problem (Fig. 3) is solved, and CMS needs additional operations (such that
fixed interface modes computation, restitution of the solution in each subdomain).
In addition, parallel sparse eigensolver provides the best approximation of the
eigenpairs. By another way, for all methods, parallel scalability [6] is guaranteed
thanks to the iterative substructuring method, if load balancing is correct.
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10 RELATIVE ERROR - STATIC CONDENSED MASS

FREQUENCY | ——
FREQUENCY 5 -+--
1+ FREQUENCY 10 -@--
014,
“
~.
0.01 4 \\ Moo a
0.001 4
0.0001
le-05 T T T T

5 7 10
NUMBER OF COUPLING MODES

FI1GURE 1. Error for beam 3d, method 1, Nr increasing
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FIGURE 2. Beam 3d, eigenspectrum of the Schur complement with
different mass matrices

By the way, method 2 is shown to be less accurate (with 25 coupling modes the
relative error is less than 3%) than method 1 (see also [2, 10]), but quickly gives
an approximation of the global eigenpairs with regard to the others CMS.

In conclusion, the methods presented in this paper are particularly well suited
to the architecture of parallel computers. The different methods can be improved in
order to take into account other finite elements (plates, shells). A comparison with
other methods using coupling modes [2, 10] seems necessary. Let us lastly note
that particular methods can be derived for special cases (decomposition without
cross-point).
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