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1. Introduction

Computational Fluid Dynamics codes based on the Reynolds averaged Navier-
Stokes equations may be used to simulate the generation of sound waves along with
the other features of the flow of air. For adequate acoustic modeling the information
about the sound sources within the flow is passed to a linearized Euler solver that
accurately resolves the propagation of sound through the non-uniformly moving
medium.

Aerodynamic sound is generated by the flow of air or results from the interaction
of sound with airflow. Computation of aerodynamic noise implies direct simulation
of the sound field based on first principles [6]. It allows complex sound fields to be
simulated such as those arising in turbulent flows.

When building a software tool for this simulation two options exist: (a) to
develop a new code especially for this purpose, or (b) to use an existing Computa-
tional Fluid Dynamics (CFD) code as much as possible. (As it will be shown later,
due to numerical diffusion conventional CFD codes tend to smear the sound signal
too close to its source, and cannot be used directly for aeroacoustic simulations.)

The second option is considered here as it seems to require less work and makes
use of the vast amount of experience accumulated in flow modeling. CFD codes
have built-in capabilities of handling non-linearities, curved boundaries, boundary
layers, turbulence, and thermal effects. They are based on optimized, efficient,
readily converging algorithms. If no CFD code is used as a basis, all these features
have to be implemented again in the new code developed for the simulation of the
sound field.

2. The need for a special approach to sound

Aerodynamic sound is generated as a result of the interaction of vortex struc-
tures that arise in viscous flows. These vortex structures are most often associated
with either a shear layer or a solid surface. Once the sound is generated it prop-
agates in the surrounding non-uniformly moving medium and travels to the ‘far
field’.

Sound propagation is hardly affected by viscosity (that is why noise is so difficult
to suppress). Also, sound perturbations are so small that their contribution to the
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FIGURE 1. Conventional CFD solution of test problem

convection velocity of the flow is negligible in many cases. These two facts mean
that sound propagation is, in essence, described by the linearized Euler equations
(1).

The simulation of the flow that generates sound, however, requires time accu-
rate solutions of the Navier-Stokes equations. Two approaches exist here: Reynolds
Averages and Large Eddy Simulation. Both of them require adequate turbulence
models and fine meshes to capture the small structures in the flow that oscillate
and generate sound.

Most available Computational Fluid Dynamics (CFD) codes have implemen-
tations of Reynolds Averaged Navier-Stokes solvers (RANS). That is because the
new alternative, Large Eddy Simulation (LES), requires more computational power
that has become available only in the recent years. In our opinion, the future of
Computational Aeroacoustics (CAA) is closely related to LES. For the time being,
however, we should try to make the most of RANS.

Due to the diffusivity of the numerical schemes and the extremely small mag-
nitude of the sound perturbations, RANS codes are not generally configured to
simulate sound wave propagation. This is illustrated by the simple test of one-
dimensional propagation in a tube of sound waves generated by a piston at one end
that starts oscillating at time zero. The resulting sound field (pressure distribution)
is compared with the one computed by the RANS solver PHOENICS [1] with its
default numerical scheme (upwind fully implicit). As it can be seen on Figure 1,
the numerical and the analytic solutions agree only in a very narrow region next
to the source at the left end of the domain. In this admittably worst-case scenario,
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TABLE 1
CFD CAA
(Computatior:md Dynamics) (Computational Aeroacoustics)
Nonuniform/Unstructured Grid Regular Cartesian Grid

Fully Implicit in Time Explicit/semi-implicit Schemes

Upwind Discretization Higher Order Numerical Schemes
Smooth Solid Boundaries Boundaries Can Be Stepwise

Small-scale structures Extremely small magnitude

refining of the mesh does not change the result at all. (Better results can be ob-
tained by switching to higher order schemes available within the same CFD code
but they still cannot be relied upon for long distance wave propagation.)

To tackle these problems the new scientific discipline Computational Aeroa-
coustics has emerged in the last several years. The important issues of sound
simulation have been identified [7], and adequate methods have been developed
[8, 4, 3]. Table 1 shows how different the requirements for accuracy and efficiency
are with the numerical solutions of the flow and the sound field respectively.

Although the sound equations (1) are a particular form of the equations govern-
ing fluid flow, great differences exist in magnitude, energy and scale of the solved-for
quantities. (Acoustic perturbations are typically at least 10 times weaker than the
corresponding hydrodynamic perturbations and a thousand times smaller than the
mean flow that carries them. On the other hand acoustic wavelengths are typically
several times larger than the corresponding structures in the flow.)

All this means that the algorithmic implementations are so different that they
can hardly share any software modules. So, it will be best if a way is found of
coupling a flow solver with an acoustic solver in such a manner that each of them
does the job that it is best suited for.

3. The coupling

The basic idea of software coupling between CFD and CAA (decomposition of
variables into flow and acoustic parts) as well as the Domain Decomposition into
near field and far field was presented in our previous works [2, 3]. The CFD code
is used to solve the time-dependent RANS equations while the CAA deals with the
linearized Euler equations:

op  _0Op _90v;
o T, T P, =5
ov; _ 0v; 1op _
(1) E-{-’U]a—xj + 58—231_ I
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Here p is the pressure perturbation, vy, vs and vs are the Cartesian components of
the velocity perturbation. The values of the speed of sound ¢, of the local density
p and of the velocity components of the flow v; are supplied by the CFD code.

CAA algorithms are designed to solve these equations (1) with known right-
hand sides S and F; that are functions of z; and time ¢. Term S contains any sources
of mass that may be present in the computational domain, such as vibrating solid
surfaces. The three forcing terms F; will be set to zero in most practical acoustic
applications. In theory they contain the viscous forces which have negligible effect
on sound propagation. There are some cases where the nonlinear terms associated
with the acoustic perturbations may have to be taken into account. Then S and
F; will be updated within the acoustic code at each iteration rather than once per
time step.

The present study concentrates on the use of the source term S to transfer
the information about the generation of sound from the CFD code to the acoustic
solver.

A closer examination of the time history of the CFD solution pictured in Fig-
ure 1 reveals that the pressure at the first node next to the source of sound has
been resolved accurately. It is suggested that the temporal derivative of the local
pressure at the source nodes, calculated from the CFD solution, is added to the
source term S of the acoustic equations (1).

op

(2) § =2+ Suib

Here S,;;, denotes sources external to the flow like vibrating solid objects. Thus the
following combined algorithm can be outlined:

1. Obtain a steady CFD solution of the flow problem.

2. Start the time-dependent CFD simulation with these initial conditions.

3. Impose the calculated temporal derivative of the pressure at selected nodes
within the flow region as part of the source term of the acoustic simulation.

4. Solve the linearized Euler equations in the acoustic domain applying any
external sources of mass (vibrating solids).

The introduction of the temporal derivative % into the source term S is best
implemented in finite volume discretization. Then, if phase accuracy of the calcu-
lated acoustic signal is essential (like with resonance), the time-dependent outflow
from the control volume with increasing p in the CFD solution or the inflow per-
turbation if p is decreasing should also be taken into account in order to calculate
the correct amount of mass that is assumed to enter or exit the acoustic simulation
at each time step. The finite volume form of the RANS continuity equation with
isentropic conditions (g—g = ¢?) suggests the following pressure source:

o A
S = PCQ(Uj - vj,average)A—‘]/ + Suib
(3) j = Influz, % >0
o op
Jj = Outflow, 5 < 0

where Ajnfius is the area of the faces of the cell with volume AV across which
there is inflow during the time step At, and the repeated index denotes summation
over all such faces. Since this option introduces the whole flow perturbation into
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FIGURE 2. Combined solution of test problem

the acoustic simulation, the acoustic solver in this case must be capable of handling
smooth curved solid boundaries.

The two codes have separate meshes in overlapping domains. The RANS mesh
must be body fitted to represent smooth solid boundaries. The acoustic mesh can
be regular Cartesian if option (2) is chosen. In this case the CAA domain can be
larger — extending to the mid field if Kirchhoff’s method is used [5] or to the far
field if high-order optimized numerical schemes are employed [8]. Uniform mean
flow has to be assumed outside the region of the CFD simulation.

Prior to the introduction into the acoustic simulation the flow quantities (77, p
and P, in air ¢2 = 1.4%, see 1) are interpolated with piecewise constant functions
(choosing the nearest neighbouring point from the irregular CFD mesh). This can
be done because typically the flow mesh is finer than the acoustic mesh.

In some cases (separated flows, jets) the sources of noise cannot be localized and
are instead distributed across the computational domain. Then the most efficient
option is choosing a higher order scheme within the CFD code itself and defining
a ‘near field’ boundary where the acoustic signal is radiated from the RANS solver
to the linearized Euler solver.

4. Results

The above algorithm was validated on the same 1D propagation test problem
that was described in the second section. Using the pressure, velocity and density
fields provided by the CFD code at each time step and a finite volume acoustic
solver, the actual acoustic signal was recovered as it can be seen in Figure 2. Here
the coupling option defined by (3) has been implemented with S,;; = 0. (The
acoustic source was introduced in the CFD simulation rather than in the acoustic
one, in order to set up this test.)

As a 2D example, generation of sound by a vortex impinging on a flat plate is
considered. A Reynolds-Averaged Navier-Stokes solver [1] is used to compute the
airflow on a mesh that is two times finer in the direction perpendicular to the plate
than the corresponding grid for adequate acoustic simulation.

The geometry of the problem and the hydrodynamic perturbation velocity field
(with the uniform background flow subtracted) are in Figure 3.
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FIGURE 3. Hydrodynamic perturbations and blade. Scale: 1 m/s
to 0.1 m
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FIGURE 4. Instantaneous pressure contours. Spacing: 6 Pa

The pressure fluctuations (temporal derivatives) next to the solid surface are
imposed as source terms on the linearised Euler equations which are solved sepa-
rately as described above. The size of the computational domain is small enough so
that the finite volume solver [3] can predict accurately the sound field. A snapshot
of the pressure perturbations can be seen in Figure 4. A graph was made of the
acoustic pressure as a function of time at different locations above and below the
solid blade. As it can be seen from Figure 5, the amplitude of the sound waves
generated at the blade decreases away from it as expected.
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FIGURE 5. Acoustic signal in the specified cells above and below
the centre of the blade.

5. Conclusions

A coupled technique has been developed that allows general-purpose RANS
solvers to be used with sound generation problems. Both geometrical and physical
domain decomposition has been considered. At the locations where it is gener-
ated sound is passed to a linearized Euler solver that allows adequate numerical
representation of the propagating acoustic waves. The current implementation is
applicable to aerodynamic noise generation either on solid surfaces or in volumes
that are not surrounded by reflecting objects.
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