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1. Introduction

A new Neumann-Neumann type domain decomposition algorithm for the so-
lution of contact problems of elasticity and similar problems is described. The
discretized variational inequality that models the equilibrium of a system of elastic
bodies in contact is first turned by duality to a strictly convex quadratic program-
ming problem with either box constraints or box and equality constraints. This step
may be considered a variant of the FETI domain decomposition method where the
subdomains are identified with the bodies of the system. The resulting quadratic
programming problem is then solved by algorithms proposed recently by the au-
thors. Important new features of these algorithms are efficient adaptive precision
control on the solution of the auxiliary problems and effective application of pro-
jections, so that the identification of a priori unknown contact interfaces is very
fast.

We start our exposition by reviewing a variational inequality in displacements
that describes the conditions of equilibrium of a system of elastic bodies in contact
without friction. The inequality enhances the natural decomposition of the spatial
domain of the problem into subdomains that correspond to the bodies of the system,
and we also indicate how to refine this decomposition. After discretization, we get
a possibly indefinite quadratic programming problem with a block diagonal matrix.

A brief inspection of the discrete problem shows that its structure is not suitable
for computations. The main drawbacks are the presence of general constraints that
prevent effective application of projections, and a semidefinite or ill conditioned
matrix of the quadratic form that may cause extremely expensive solutions of the
auxiliary problems.

A key observation is that both difficulties may be essentially reduced by the
application of duality theory. The matrix of the dual quadratic form turns out to be
regular, moreover its spectrum is much more favorably distributed for application
of the conjugate gradient based methods than the spectrum of the matrix of the
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SOLUTION OF CONTACT PROBLEMS 83

quadratic form arising from the discretization. These conclusions follow from the
close relation of the procedure to the FETI method proposed by Farhat and Roux
[20, 18] for the solution of linear elliptic problems. Furthermore, the inequality
constraints of the dual problem are just non-negativity constraints, so that our
recent results on application of projections and adaptive precision control may be
used for the solution of these problems.

The structure of the constraints of the dual problem depends on the coercivity
of the contact problem under consideration. If the contact problem is coercive, i.e.
if prescribed equality constraints on the displacement of each body prevent its rigid
body motion, then the dual problem has only simple non-negativity constraints.
We describe an efficient algorithm for the solution of these problems that uses the
conjugate gradient method with projections and inexact solution of the auxiliary
subproblems that has been proposed independently by Friedlander and Martinez (3,
21, 22, 23, 24, 25, 26] and Dostdl [11]. The algorithm has been proved to converge
to the solution and conditions that guarantee the finite termination property have
been established. The algorithm may be implemented with projections so that it
can drop or add many couples of nodes on the contact interface whenever the active
set is changed. Thus the contact interface may be identified very fast even with a
poor initial guess.

Next we consider the solution of semicoercive problems, i.e. problems with
‘floating’ bodies. Application of duality reduces these problems to the solution of
quadratic programming problems with simple bounds and equality constraints. In
this case, the feasible set is too complex to enable effective evaluations of projec-
tions, but we use a variant of the augmented Lagrangian algorithm proposed for
the solution of more general non-linear problems by Conn, Gould and Toint [5, 6].
The algorithm generates in the outer loop the Lagrange multipliers for equality
constraints while auxiliary problems with simple inequality constraints are solved
in the inner loop. The precision of the solution of the auxiliary problems is con-
trolled by the norm of the violation of the equality constraints, and an estimate
for the error has been obtained that does not have any term that accounts for the
precision of the solution of the auxiliary problems with simple bounds. Results on
global convergence and boundedness of the penalty parameter are also reported.
Moreover, we show that the penalty term in the augmented Lagrangians affects the
convergence of the conjugate gradient solution of the auxiliary problems only very
mildly. The paper is completed by numerical experiments.

To simplify our exposition, we have restricted our attention to the frictionless
contact problems. However, the algorithm may be extended to the solution of
contact problems with Coulomb friction [16].

2. Conditions of equilibrium of elastic bodies

Consider a system of s homogeneous isotropic elastic bodies, each of which
occupies in a reference configuration a domain QP in IR? d = 2,3 with sufficiently
smooth boundary I'? as in Figure 1. We assume that the bodies do not interpene-
trate each other so that the intersection of any two different domains is empty. Sup-
pose that each I'? consists of three disjoint parts 'Y, '}, and T'%,, I? = 'Y, UTRUTZ,,
and that the displacements U? : I'f, — IR and forces FP : T}, — IR? are given.
The part I'?, denotes the part of I'” that may get into contact with some other body.
In particular, we shall denote by I'?Y the part of ' that can be, in the solution, in
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FIGURE 2. Linearized non-interpenetration

contact with the body Q9. Finally, let ¢}, : 97 — IR? and g? : @7 — IR* denote
the entries of the elasticity tensor and a vector of body forces, respectively.

For any sufficiently smooth displacements u : Q! x ... x Q% — IR%, the total
potential energy is defined by

(1) J(u) = i: {% / a(uP,uP)dQ — [ (gP)TuPdQ — (F”)Tu”df‘}
or

) P
=1 r e,
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where

1
(2) aP(uf,vP) = i/m cijheel; (uP)ep,(vP)dl

1/0u} ouf

P(aP) = = =2k 27

3) eke(0”) 2 <8$§ + 6l‘£>
We suppose that the elasticity tensor satisfies natural physical restrictions so that
4) a?(u?,vP) = a(vP,uP) and a(u®,u?)>0.

To describe the linearized non-interpenetration conditions, let us define for
each p < ¢ a one-to-one continuous mapping OF? : 'Y — T'% that assigns to
each x € I'Y some point of I'?¥ that is near to x as in Figure 2. The linearized
non-interpenetration condition at x € I'Y then reads

() (u”(x) — u?(0"(x)))n” < (O"(x) - x)n",x € TZ, p <.

Similar conditions may be written for description of non-interpenetration with
rigid support.
Now let us introduce the Sobolev space

(6) V=H(OY x ... x H(Q%)Y,

and let K = K., nKineq denote the set of all kinematically admissible displace-
ments, where

(7) K,={veV:v"=U on I}
and

(®)

The displacement u € K of the system of bodies in equilibrium satisfies

Kineg ={ veV:(v(x)—-v!(0"(x)))n? < (OF!(x) — x)n”,
xelWl, p<q}.

9) J(u) <J(v) for any v € K.
Conditions that guarantee the existence and uniqueness may be found e.g. in
4, 28].

More general boundary conditions that those described by prescribed forces
or displacements may be considered, e.g. prescribed normal displacements and
zero forces in the tangential plane. Moreover, we can also decompose each body
into subdomains as in Figure 3 to obtain optional secondary decomposition. The
Sobolev space V would then be defined on the product of all subdomains and the
definition of the set K would enhance also the interface equality constraints that
guarantee continuity of the displacements across new auxiliary interfaces I';*’ in
each block QP.

3. Discretized contact problem on interface

If there is no secondary decomposition, then the finite element discretization
of 2 =Q'U...UN* with suitable numbering of the nodes results in the quadratic
programming (QP) problem

1
(10) §uTKu — fTu — min subject to Bu < ¢

with a symmetric positive definite or positive semidefinite block-diagonal matrix
K = diag(K3,...,K;) of order n, an m x n full rank matrix B, f € IR", and
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FIGURE 3. Secondary decomposition of QF

¢ € IR™. The matrix B and the vector ¢ describe the linearized incremental non-
interpenetration conditions. The rows b; of B are formed by zeros and appropriately
placed coordinates of outer unit normals, so that the change of normal distance due
to the displacement u is given by u”b;, and the entry ¢; of ¢ describes the normal
distance of the i—th couple of corresponding nodes on the contact interface in the
reference configuration. The vector f describes the nodal forces arising from the
volume forces and/or some other imposed tractions. Typically n is large and m
is much smaller than n. The diagonal blocks K, that correspond to subdomains
QP are positive definite or semidefinite sparse matrices. Moreover, we shall assume
that the nodes of the discretization are numbered in such a way that the matrices
K, are banded matrices that can be effectively decomposed, possibly after some
regularization, by means of the Cholesky factorization.

If there is a secondary decomposition, then the continuity of the displacements
across the auxiliary interface requires u’h; = 0, where h; are vectors of order
n with zero entries except 1 and —1 in appropriate positions. If H is a matrix
formed by the rows h;, then the discretization of problem (10) with the secondary
decomposition results in the QP problem

(11) %'uTKu — fTu — min subject to Bu<c¢ and Hu =0.

With a suitable enumeration of the nodes, each K; turns out to be block diagonal
with banded diagonal blocks.

Even though (11) is a standard convex quadratic programming problem, its
formulation is not suitable for numerical solution. The reasons are that K might
be singular and the feasible set is in general so complex that projections cannot be
computed to obtain fast identification of the active set at the solution.

The complications mentioned above may be essentially reduced by applying
the duality theory of convex programming (e.g. Dostél [10, 9]). If there is no
secondary decomposition, we get

(12) 6()\) — min subject to A >0 and R'(f — BTX\) =0
where
(13) 6()) = %ATBWBTA _AT(BK*f —¢),
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R denotes a matrix whose columns span the null space of K, and K™ denotes a
generalized inverse of K that satisfies K KTK = K. Let us recall that

K* = diag(K{,... ,K})

and that K = K, I whenever K, is non-singular. If K, is singular then it is easy
to check that there is a permutation matrix P, and a non-singular matrix F), such

that
F S
T _
w o meee(h )
and
F71 o T
(15) K;'=Pp< ’(’) 0>Pp.

Once the solution A of (12) is known, the vector u that solves (10) can be
evaluated. In particular, if K is positive definite then

(16) u=K"'(f - BT\).

If K is singular and R is a full rank matrix then

(17) uw=Ra+ K" (f - B')),

(18) o= (RTBTBR)'RYBY(¢ — BAT(f - BT)))

and (B, ¢) formed by the rows of (B, c) that correspond to the nonzero entries of \.

If there is a secondary decomposition, then there are additional Lagrange mul-
tipliers for equalities. Thus, the only new feature when compared with the problem
without the secondary decomposition is the presence of free Lagrange multipliers
in the dual formulation in this case.

The matrix BK+ BT is invertible when no rigid body displacement can be writ-
ten as a linear combination of the columns of BT. Moreover, the matrix BK+BT
is closely related to the matrix resulting from the application of the FETI method
of Farhat and Roux [20], so that its spectrum is relatively favorably distributed
for the application of the conjugate gradient method (Farhat, Mandel and Roux
(17, 19]).

4. Solution of coercive problems

An important point in the development of an efficient algorithm for the solution
of (12) is the observation that QP problems with simple bounds are much simpler
than more general QP problems. Here we shall briefly review our results on the
solution of QP problems with simple bounds.

To simplify our notations, let us denote

A = BK+BT b = BK*f—c
d = RTC D = RTBT
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and let us first assume that K is non-singular, so that problem (12)-(13) reads

(19) 6(z) —» min subject to x>0
where
(20) b(z) = %xTAJJ 'z,
Let us denote by A(z) and F(z) the active and free sets of indices of x, respec-
tively, i.e.
(21) Alx)={i:z; =0} and F(z)={i:z; #0}.
The unbalanced contact gradient g and the inner gradient g/ of (z) are defined
by
(22) g/ = g foriec F(z)and g/ =0 foric Az)
(23) g¢ = Oforie F(z)and ¢ = g, for i € A(z)

where g = g(z) = VO(z), g = ¢i(z) and g; = min{0,9;}. Hence the Kuhn-
Tucker conditions for the solution of (19) are satisfied when the projected gradient
gF = g" + g© vanishes.

An efficient algorithm for the solution of convex QP problems with simple
bounds has been proposed independently by Friedlander and Martinez [21] and
Dostél [11]. The algorithm may be considered a modification of the Polyak algo-
rithm that controls the precision of the solution of auxiliary problems by the norm
of g© in each inner iterate y'.

If for I' > 0 the inequality

g ()l < Tllg" (vl
holds then we call y* proportional. The algorithm explores the face
W;={y:y;=0foriel}

with a given active set I as long as the iterates are proportional. If y* is not
proportional, we generate y'*! by means of the descent direction d' = —g“(y?)
in a step that we call proportioning, and then we continue exploring the new face
defined by I = A(y'"!). The class of algorithms driven by proportioning may be
defined as follows.

ALGORITHM 1. (General Proportioning Scheme - GPS)
Let y° >0 and I > 0 be given. Fori > 0, choose y'™! by the following rules:
(i) If y* is not proportional, define y**t! by proportioning.
(ii) If ' is proportional, choose y**' > 0 so that

0(y'™') <o(y")
and y'! satisfies at least one of the conditions: A(y') C A(y'*'),y"*! is not
proportional, or y*T minimizes 0(€) subject to £ € Wi, I = A(y").

The set relation C is used in the strict sense so that it is satisfied if the set on
the left is a proper subset of the set on the right. Basic theoretical results have
been proved in [3, 11, 21, 22].

THEOREM 2. Let z* denote an infinite sequence generated by Algorithm GPS
with given 2V and T > 0. Let 6(x) be a strictly convexr quadratic function. Then
the following statements are true:
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(i) z* converges to the solution T of (19).

(ii) If the problem (19) is not degenerate, then there is k such that T = z*.

(iii) If T > k(A)Y/2, where k(A) is the spectral condition number of A, then there
is k such that ¥ = z*.

Step (ii) of Algorithm GPS may be implemented by means of the conju-
gate gradient method. The most simple implementation of this step starts from
y° = z* and generates the conjugate gradient iterations y',y?, ... for min{f(y) :
y € Wi, I = A(%°)} until 3 is found that is not feasible or not proportional or
minimizes 6(x) subject to y > 0. If 4 is feasible, then we put zF+! = y¢, otherwise
y' = y*~! —a’p’ is not feasible and we can find @' so that ¥+ = ' —a'p' is feasible
and A(z*) € A(z**1). We shall call the resulting algorithm feasible proportioning
[11].

An obvious drawback of feasible proportioning is that the algorithm is usually
unable to add more than one index to the active set in one iteration. A simple but
efficient alternative is to replace the feasibility condition by 8(Pyt!) < 6(Py'),
where Py denotes the projection on the set Q2 = {y : y > 0}. If the conjugate
gradient iterations are interrupted when condition 8(Py**1) > 6(Py?) is satisfied,
then a new iteration is defined by z**! = Py’. Resulting modification of the feasible
proportioning algorithm is called monotone proportioning [11]. More details on
implementation of the algorithm may be found in [15].

5. Solution of semicoercive problems

Now we shall assume that the matrix K is only positive semidefinite, so that
problem (12)-(13) with the notations of the previous section reads

(24) 6(z) — min subject to x>0 and Dz =d.

The algorithm that we propose here may be considered a variant of the algo-
rithm proposed by Conn, Gould and Toint(1991) for identification of stationary
points of more general problems.

ALGORITHM 3. (Simple bound and equality constraints)

Step 0. { Initialization of parameters } Set 0 < a < 1 [a = .1] for equal-
ity precision update, 1 < [ [ = 100] for penalty update, py > 0 [pp = 100]
for initial penalty parameter, ng > 0 [ng = .001] for initial equality precision,
M >0 [M = py/100] for balancing ratio, u° [u® = 0] and k = 0.

Step 1. Find z* so that
llg” (z*, u¥, pr)|| < M|| Dz — dJ.

Step 2. If ||g¥ (z*, u*, pr.)|| and ||Dz* — d|| are sufficiently small
then =¥ is the solution.

Step 8. p*tl = uk + pp(Dz* — d).

Step 4. If ||Da* —d|| <k then pxyr = pr, Mk = ame
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Step 4b.  else pr11 = Bpk, Mk+1 = Mk
end if.

Step 5. Increase k and return to Step 1.
In this algorithm, we now denote by g the gradient of the augmented Lagrangian
1
so that
9(z, 1, p) = Az = b+ DT (u + pD(z — d))

An implementation of Step 1 is carried out by minimization of the augmented
Lagrangian L subject to x > 0 by means of the algorithm of the previous section.
The unique solution T = Z(u, p) of this auxiliary problem satisfies the Kuhn-Tucker
conditions

(25) gp(f’/iap) =0.

Typical values of the parameters are given in brackets.

The essential feature of this algorithm is that it deals completely separately
with each type of constraint and that it accepts inexact solutions of the auxiliary
box constrained problems in Step 1. For parallel implementation, A should be kept
as the product BKTB since A is just used in the matrix-vector products. The
action of K* may be evaluated by means of a triangular decomposition.

The algorithm has been proved ([13]) to converge for any set of parameters
that satisfy the prescribed relations. Moreover, it has been proved that the asymp-
totic rate of convergence is the same as for the algorithm with exact solution of
auxiliary quadratic programming problems (i.e. M = 0) and the penalty parameter
is uniformly bounded.

The use of the augmented Lagrangian method turned out to be very efficient
in spite of the fact that it obviously reintroduces ill conditioning into the auxiliary
problems. The explanation is given by the following theorem and by analysis of the
conjugate gradient method by Axelsson and Lindskog [1, 2], who showed that the
rate of convergence is much faster than it could be expected from the conditioning
of the problem provided there is a gap in the spectrum.

THEOREM 4. Let A € IR™ ™ be a symmetric positive definite matriz, D €
R™ ™ q full rank matriz, m < n and p > 0. For any matrizc M of order n, let
51 (M) <...<6,(M) denote the eigenvalues of M. Then

(26) bn-m(A+pDTD) < 8,(A)
(27) bn-ms1(A+pDT'D) > pbu_ms1(DT'D) > 0.

6. Numerical experiments

In this section, we illustrate the practical behavior of our algorithm. First, a
model problem used to validate the algorithm is presented. Next, two problems
arising in mechanical and mining engineering, respectively, are commented. All
the experiments were run in a PC-486 type computer, DOS operating system,
Microsoft Fortran 77 and double precision. The auxiliary problems were solved by
QUACAN routine developed in the Institute of Mathematics, Statistics and Scientific
Computation of UNICAMP.
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PROBLEM 1. This is a model problem resulting from the finite difference dis-
cretization of the following continuous problem:

2
Minimize  q(u1,u2) = Z (/ V) 2dQ —/ PuidQ>
— \Ja, Q,

subject to u1(0,y) =0 and ur(1,y) <wus(l,y) for y €[0,1],

where Q; = (0,1) x (0,1), Q = (1,2) x (0,1), P(z,y) = —1 for (z,y) € (0,1) x
[0.75,1), P(z,y) = 0 for (z,y) € (0,1) x (0,0.75), P(z,y) = —1 for (z,y) € (1,2) x
(0,0.25) and P(z,y) = 0 for (z,y) € (1,2) x (0.25,1). The discretization scheme
consists in a regular grid of 21 x 21 nodes for each unitary interval. We took the
identically zero initial approximation. This problem is such that the matrix of the
quadratic function is singular due to the lack of Dirichlet data on the boundary of
Q. In order to reduce the residual to 107°, three simple bounded (SB) problems
had to be solved. The total number of iteration used by QUACAN was 23, taking 34
matrix-vector products. More details on this problem may be found in [10].

PROBLEM 2. The objective of this problem is to identify the contact interface
and evaluate the contact stresses of a system of elastic bodies in contact. Some rigid
motion is admitted for these bodies. This type of problems is treated in [14]. The
model problem considered to test our algorithm consists of two identical cylinders
that lie one above the other on a rigid support. A vertical traction is applied at
the top 1/12 of the circumference of the upper cylinder. Assuming the plane stress,
the problem was reduced to 2D and discretized by the boundary element method
so that the dimension of the discretized problem was 288 with 14 couples of nodes
on the contact interfaces. This problem was first considered admitting vertical
rigid motion of the upper cylinder only. A second formulation admitted rigid body
motion of both cylinders. The Lagrange multipliers of the solution are the contact
nodal forces. To solve the problem with relative precision equal to 10~%, three (SB)
problems were solved with p = 106, M = 10* and I' = 0.1. The total number of
QUACAN iterations was 42.

PRrROBLEM 3. Finally, we consider a problem of equilibrium of a system of elas-
tic blocks. This problem arises in mining engineering. An example of the solution
of such problems under the assumption of plane strain may be found in [7]. The
difficulties related to the analysis of equilibrium of block structures comprise iden-
tification of unknown contact interface, necessity to deal with floating blocks that
do not have enough boundary conditions and often large matrices that arise from
the finite element discretization of 3D problems. To test the performance of our
algorithm we solved a 3D problem proposed by Hittinger in [27]. The 2D version
of this problem was solved in [27] and [8]. A description of the problem and the
variants solved with our algorithm are in [12]. Main characteristics of the two block
variant were 4663 nodal variables and 221 dual variables (unknown contact nodal
forces), while the three block variant comprised 6419 nodal variables and 382 dual
variables. The bandwidth was 165 in both variants. The solution to relative preci-
sion 10™* was obtained with three outer iterations, that is, just three (SB) problems
were necessary. The number of inner QUACAN conjugate gradient iterations for two
and three block problems was 105 and 276, respectively.
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7. Comments and conclusions

We have described a new algorithm for the solution of coercive and semicoercive
contact problems of elasticity without friction based on variational formulation
reduced to the boundary. The method directly obtains the tractions on the contact
interface. The stress and strain distribution may then be obtained by the solution
of standard linear problems for each body separately.

The algorithm combines a variant of the domain decomposition method of the
Neumann-Neumann type based on the duality theory of quadratic programming
with the new algorithms for the solution of the quadratic programming problems
with simple bounds. For the solution of semicoercive problems, these methods
are exploited in the augmented Lagrangian algorithm. A new feature of these
algorithms is the adaptive control of precision of the solution of auxiliary problems
with effective usage of the projections and penalty technique.

The implementation of the algorithm deals separately with each body, so that
the algorithm is suitable for parallel implementation. First numerical experiments
indicate that the algorithms presented are efficient. We believe that the perfor-
mance of the algorithms may be considerably improved by the ‘coarse grid’ precon-
ditioner in combination with the standard regular preconditioners as presented at
this conference by F.-X. Roux et al. [29].
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