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1. Introduction

In this paper, we discuss a domain decomposition method for solving linear
systems of algebraic equations arising from the discretization of elliptic problem in
the 3-D by the mortar element method, see [4, 5] and the literature given theirin.
The elliptic problem is second-order with piecewise constant coefficients and the
Dirichlet boundary condition. Using the framework of the mortar method, the
problem is approximated by a finite element method with piecewise linear functions
on nonmatching meshes.

Our domain decomposition method is an iterative substructuring one with a
new coarse space. It is described as an additive Schwarz method (ASM) using the
general framework of ASMs; see [11, 10]. The method is applied to the Schur
complement of our discrete problem, i.e. we assume that interior variables of all
subregions are first eliminated using a direct method.

In this paper, the method is considered for the mortar elements in the geometri-
cally conforming case, i.e. the original region €2, which for simplicity of presentation
is a polygonal region, is partitioned into polygonal subregions (substructures) €2;
that form a coarse finite element triangulation.

The described ASM uses a coarse space spanned by special functions associated
with the substructures §2;. The remaining spaces are local and are associated with
the mortar faces of the substructures and the nodal points of the wire basket of the
substructures. The problems in these subspaces are independent so the method is
well suited for parallel computations. The described method is almost optimal and
its rate of convergence is independent of the jumps of coefficients.

The described method is a generalization of the method presented in [8] to
second order elliptic problems with discontinuous coefficients. Other iterative sub-
structuring methods for the mortar finite elements have been described and ana-
lyzed in several papers, see [1, 2, 6, 12, 13] and the literature given theirin. Most
of them are devoted to elliptic problems with regular coeflicients and the 2-D case.
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MORTAR PROBLEMS WITH DISCONTINUOUS COEFFICIENTS 95

The outline of the paper is as follows: In Section 2, the discrete problem ob-
tained from the mortar element technique in the geometrically conforming case is
described. In Section 3, the method is described in terms of an ASM and Theorem
1 is formulated as the main result of the paper. A proof of this theorem is given in
Section 5 after that certain auxiliary results, which are needed for that proof, are
given in Section 4.

2. Mortar discrete problem

We solve the following differential problem: Find u* € H(Q) such that
(1) a(u*,v) = f(v), ve€ Hy(Q),

where
N
a(u,v) = Zpi(vu,vv)wm,>, f) = (f,v)r2),
i=1

Q =UN,Q; and p; is a positive constant.

Here Q) is a polygonal region in the 3-D and the ); are polygonal subre-
gions of diameter H;. They form a coarse triangulation with a mesh parameter
H = max; H;. In each €; triangulation is introduced with triangular elements egl)
and a parameter h; = max; b\’ where A\’ is a diameter of e!’). The resulting
triangulation of 2 can be nonmatching. We assume that the coarse triangulation
and the h;-triangulation in each Q; are shape-regular in the sense of [7]. Let X;(£2;)
be the finite element space of piecewise linear continuous functions defined on the

triangulation of §2; and vanishing on 0€; N 0f, and let
XMQ) = X1(Q1) x - x Xn(Qn).

To define the mortar finite element method, we introduce some notation and
spaces. Let
= (U;00;)\09
and let Fi; and E;; denote the faces and edges of §2;. The union of Eij forms the
wire basket W; of ;. We now select open faces 7, of T, called mortars (masters),
such that
[ =UpAm and v, Ny, =0 if m # n.

We denote the face of £2; by v,,z;). Let 7,y = Fi; be a face common to €2;
and ;. F;; as a face of ); is denoted by 6,,(;) and it is called nonmortar (slave).
The rule for selecting v,,(;; = Fi; as mortar is that p; > p;. Let W’“(F,;j) be
the restriction of X;(€2;) to Fj;. Note that on Fj; = 7,,(;y = 0,,(;) we have two
triangulation and two different face spaces W"i(v,,;)) and W™ 1 (6m(j))-

Let M" (6m(;)) denote a subspace of wh 1 (6,n(;y) defined as follows: The values
at interior nodes Of dm(j) are arbitrary, while those at nodes on 96,,(;) are a convex
combination values at interior neighboring nodes:

g np

Zav i(k) (Pz(k Zal—l

Here a; > 0, z € 06y, and the sum is taken over interior nodal points z;(x)
of 0p,(j) such that an interval (zx,z;x)) is an edge of the triangulation and their
number is equal to ny; ;) is a nodal basis function associated with x;,, for
details see [4].
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We say that u;,,) and uj(,,), the restrictions of u; € X;(€;) and u; € X,;(£;)
to Om, a face common to §); and (Q;, satisfy the mortar condition if

(2) / (ui(m) - uj(m))wds =0, we th ((Sm)
6

m

This condition can be rewritten as follows: Let I, (t;(m), v;(m)) denote a projection
from L?(8,,) on Whi(é,,) defined by

(3) / o (Wigm) s Vj(m) ) wds :/ Uymywds, w € M"(8,,)
6771 677l

and

(4) Mo (Wigm), Vi(m)) 106, = Vj(m)-

Thus w;(m) = M (Uigm), Vi(m)) if Vj(m) = Uj(m) o0 06,

By V" we denote a space of v € X" which satlsfy the mortar condition for each
ém C T. The discrete problem for (1) in V" is defined as follows: Find u} € V*
such that

(5) a(uZavh) = f(vh)a Up € Vha

where
N
a(un,vp) Zaz Uih, Vih) Z (Vin, V%h)L?(Q )

and v, = {v,}¥, € VR V" is a Hilbert space with an inner product defined by
a(u,v). This problem has an unique solution and an estimate of the error is known,
see [4].

We now give a matrix form of (5). Let

Vh = span{®;}

where {®,} are mortar basis functions associated with interior nodal points of the
substructures §2; and the mortars 7,,(;), and with nodal points of 07y, (;) and 96, ;),
except those on 92. These sets of nodal points are denoted by addlng the index h
The functions @ are defined as follows. For xx € Qp, ®r(x) = pk(x), the standard
nodal basis function associated with zx. For zx € Ypijn, Pk = @i on vp) C O
and I, (¢k, 0) on b, () = Ym(iy C 025, see (3) and (4), and ®; = 0 at the remaining
nodal points. If x is a nodal point common to two or more boundaries of mortars
Ym(i), then @x(x) = @i on these mortars and extended on the nonmortars 6, ;)
by I, (¢, 0), and set to zero at the remaining nodal points. Let z; be a common
nodal point to two or more boundaries of nonmortars d,,(;y, then ®; = IL,,(0, ¥x)
on these nonmortars and zero at the remaining nodal points. In the case when
T 1S a common nodal point to boundaries of mortars and nonmortars faces, ® is
defined on these faces as above. Note that there are no basis functions associated
with interior nodal points of the nonmortar faces.
Using these basis functions, the problem (5) can be rewritten as

(6) Auj, = f

where uy, is a vector of nodal values of uj. The matrix is symmetric and positive
definite, and its condition number is similar to that of a conforming finite element
method provided that the h; are all of the same order.
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3. The additive Schwarz method

In this section, we describe an iterative substructuring method in terms of an
additive Schwarz method for solving (5). It will be done for the Schur complement
system. For that we first eliminate all interior unknowns of §2; using for u; € X;(£2;)
the decomposition u; = Pu; + Hu;. Here and below, we drop the index h for
functions. Hu; is discrete harmonic in ; in the sense of (i, Vvi)r2(q,) with
Hu; = u; on 012;. We obtain

(7) s(u*,v) = f(v), veV"

where from now on V" denote the space of piecewise discrete harmonic functions
and

s(u,v) = a(u,v), w,v € V"

An additive Schwarz method for (7) is designed and analyzed using the general
ASM framework, see [11], [10]. Thus, the method is designed in terms of a decom-
position of V", certain bilinear forms given on these subspaces, and the projections
onto these subspaces in the sense of these bilinear forms.

The decomposition of V" is taken as

(8) Vi) =@+ Y vIP@+Y S v .

Ym CI i=1 zx €Wip

The space V#F)(Q) is a subspace of V" associated with the master face 7,,. Any
function of V7£1F) differs from zero only on 7, and é,,. Wj;, is the set of nodal
points of W; and V,C(Wi)
spanned by ®y.

The coarse space Vj is spanned by discrete harmonic functions ¥; defined as
follows. Let the set of substructures §2; be partitioned into two sets N; and Ng.
The boundary of a substructure in Np intersects 92 in at least one point, while
those of the interior set Ny, do not. For simplicity of presentation, we assume that
00, N ON for i € Np are faces. The general case when 9§; N 9N for ¢ € Ng are
also edges and vertices, can be analyzed as in [10]. The function ¥, is associated
with Q; for ¢ € N; and it is defined by its values on boundaries of substructures
as follows: ¥; =1 on ¥,,;y C 09, the mortar faces of 2;, and ¥; = II,,(1,0) on
Om(j) = Ym(i), the face common to Q; and ;; see (3) and (4). On the nonmortar
faces 5m(i) C 09;, ¥; =I1,,(0,1). It is zero on the remaining mortar and nonmortar
faces. We set

(9) Vo = span{¥,}ien, .

is an one-dimensional space associated with z; € Wy, and

Let us now introduce bilinear forms defined on the introduced spaces. bg,f )
associated with V,%F) X V,SLF) — R is of the form
(10) B iy Vma)) = 25 (Vom(i)s V(i) ) 12(000)»

where u,,(;) is the discrete harmonic function in Q; with data w,,:;) on the mortar
face ¥y, (;) of €, which is common to €}, and zero on the remaining faces of ;.

We set bgcw") : V,C(W’) X Vk(wl) — R equal to a(u,v).
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A bilinear form by(u,v) : V) x Vo — R is of the form

H; o o
bo(u,v) = Z (1 + log F)Hipi Z (a]‘u]' — ui)(ajvj — 'Ui) +

1€EN] (57,L(1)C6§21
H; o
(11) + z (1+logF)Hipi z U;v;.
i€ENp ¢ S (i) CO8Y;

Here 6,,(;) = m(y) is the face common to §; and 2, a; = 0 if 6,,(;) = Ym(j) C 09
and j € Np, otherwise a; =1,

(12) u = Z ﬂi\IJi, V= Z 'Dl‘\yi

1ENT 1EN]

and u; is the discrete average value of u; over 9, i.e.
(13) wo=( Y wil@)/m,
€O,
and m; is the number of nodal points of 9€);),.
Let us now introduce operators T,(nF), T,iw’) and Tj by the bilinear forms bl ),
b,Esz) and by, respectively, in the standard way. For example, T v - Vn(zF) is
the solution of

(14) b (T uv) = a(u,v), v e Vi,
Let
N 4
T=To+ Y T4y Y Tt
Y CT i=1 z, €W
The problem (5) is replaced by
(15) Tu =g

with the appropriate right-hand side.
THEOREM 1. For allu € V!
(16) Co(1 + log %)‘%(u,u) < a(Tu,u) < Cra(u,u)
where C; are positive constants independent of H = max; H;, h = min; h; and the
Jumps of p;.
4. Auxiliary results

In this section, we formulate some auxiliary results which we need to prove
Theorem 1.
Let for u € V", ug € Vj be defined as

(17) up = Z u; W,
1EN]
where the u; are defined in (13).
LEMMA 2. For ug € V; defined in (17)
(18) aug, ug) < Cby(uo, up)
where by(.,.) is gwen in (11) and C is a positive constant independent of the H;,

h; and the jumps of p;.
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PRrROOF. Note that ug on 99, 1 € Ny, is of the form
(19) Ug —_—’l_Li\I’i-l-Z’l_l,j‘I/J
J
where the sum is taken over the nonmortars 6,,(;y = Ym(j) of i and vp(;) is the

face common to €; and ;. In this formula ¥; = 0 if j € Np. Let us first discuss
the case when all j € Ny in (19). Note that W; + 3, ¥; =1 on 0. Using this,

we have
Pi|u0l%{1( = piluo —u1|H1 y<C Z pi(t; — ||\I’ s . .
m(,,)C(?Q 0 (6m(1))
It can be shown that
H;
(20) INZ]1 < CHi(1 +log —).
! Hi)‘z()(ém(z)) hl

For that note that ¥; = IL,,(1,0) on d,,(;) and use the properties of Il,,; for details
see the proof of Lemma 4.5 in [8]. Thus

H,
(21) piluoliyq,) < CHi Z pi(1 + log 7;)(“1‘ —u;)°.
S (iy COY ¢
For i € N; with j € N, we have
H; o
piluolt o,y < CH; Z pi(1 +log F)(ijuj —u;)°
Sm(iy CON ¢

where a; = 0 if 6,,;) = Ym(j) C 095 and j € Np, otherwise a; = 1. For i € Np

H.
piluoliq,y < CH; Z pi(1+ log h_)
O (i) COLY;

Summing these inequalities with respect to i, we get

(Uo,’uO < C{ Z 1 + log I )Hz'pi Z (Otjﬂj - ’ai)Q +
1ENT 5m(‘)Caﬂ'

+§: 1+log le Z a?},

iENp 8 (1) COSY

which proves (18). O

LEMMA 3. Let Yy = m(y) be the face common to Q; and Q;, and let u;(y,)
and uj(,,) be the restrictions of u; € X;(§%;) and uj € X;(825) to Y and 6p(jy,
respectively. Let ui(m) and uj(y) satisfy the mortar condition (2) on 6p(jy. If Ui(m)
and Uj(m) vanish on 07y, ;) and 86y, (;), respectively, then

sl < Cllwigmll?

1
2
00( m(j) 0

0 'Ym(i))

where C is independent of h; and h;.

This lemma follows from Lemma 1 in [3]. A short proof for our case is given
in Lemma 4.2 of [8].
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LEMMA 4. Let ®;, be a function defined in Section 2 and associated with a nodal
point xx € W; C 0Q;. Then

h
a(®k, 1) < Chip; Z (1+log =)
h;
Ym (i) COSY
where C' is independent of h; and p;, and Y ;) = Op(j)-

The proof of this lemma differs slightly from that of Lemma 4.3 in [8], therefore
it is omitted here.

5. Proof of Theorem 1
Using the general theorem of ASMs, we need to check three key assumptions;
see [11] and [10].
Assumption (iii) For each x € §) the number of substructures with common z
is fixed, therefore p(e) < C.

Assumption (i) Of course w = 1 for bi,w’)(u,u), u € V,C(W"). The estimate
a(u»u) < WbO(u,u)? u € Vy

follows from Lemma 2 with w = C.
We now show that for u € VV%F), see (10),

(22) a(u,w) < CH (u, w).
Let ¥i(m) = 0j(m) be the mortar and nonmortar sides of §2; and €2;, respectively.
(F)
For uw € V5, 7, we have

a(u,u) = a;(ui, ui) + a5y, u5) < Cpillwill” 4

forllwl®, ).
00 (Yi(m))

00(85(m))
Using now Lemma 3 and the fact that p; > p; since 7,,(;) is the mortar, we get
(22),ie. w=C.

Assumption (i) We show that for u € V" there exists a decomposition

N
(23) uU = uy + Z ’U.,(f) + Z Z UECW'),
Ym CL i=1 2 EWip
where ug € Vj, uﬁ,f’ € V,Sf) and ufcwi) € V,C(W'), such that

N
W, W, W,
bo(uo,uo) + Y b (Wl w430 > o ™ ™)

Ym CL 1=1 xr€Wjp
H 2
(24) <C(1+log —}7) a(u,u).

Let uy be defined by (17), and let w; be the restriction of w = u — ug to Q,. It
is decomposed on 9€); as

Fi, W; Wi
(25) w; = Z wg 2 +w§ ), wg ) = Z w;(x) P
F”CBQl T EWip
where wEF"’) is the restriction of w; — wz(Wi) to Fj;, the face of Q;, and zero on

O\ F;.
To define ug), let F}; = Ym(i) = 6m(;) be a face common to §2; and ;. We set

ulf) = {w) on 80 and w{"™ on 89}

i
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and set it to zero at the remaining nodal points of I'. The function uiwl) is defined
as
(26) u"" (z) = w;(z) Br ().

It is easy to see that these functions satisfy (23).
To prove (24), we first show that

H
(27) bo(uo, ug) < C(1 + log E)a(u,u).
Note that, see (11), for 8,,(;) C 6§, @ € Ny with j € N; when 6é,,(;) = Fy; is a face

common to §2; and §;,
Hipi(i; — :)* < CH; H{pillwillF2 (00, + £51usl122(50,)}-
Using the fact that the average values of u; and u; over é,,;y = Ym(j) = Fij are
equal to each other, and using the Poincare inequality, we get
Hipi(it; — t:)* < C{piluilip o, + piluslinge, -
For i € N; with j € Np we have similar estimates:
Hipi(aji; — ;)* < C{ﬂi'“il%ﬂ((zi) +Pj|uj|?11(nj)}-
Here we have used the Friedrichs inequality in €2;. Thus
(28) Z Z Hipi(ajﬂj - ﬂi)Q < Ca(u,u).
1EN] 874y COSY;
In the similar way it is shown that for i € Ng
Hipij < C{pilwilfp o, + psluslin e, }-

Summing this with respect to i € N and adding the resulting inequality to (28),
we get (27).

Let us now consider the estimate for ugnF ) e VJ&F) when Vi) = () = Fij,

the face common to §2; and Q;. We have, see (10),

b(F)(u(F) u(F)) < Cpi”wl(Fij)“? 1

m m *m EY .
Hozo(Vm(i))

Note that on Fy; = 7v,,z;

wZ(FiJ) — Ihi (GFijui) —_ Ihi (OF,‘J’UO)

where 0, = 1 at interior nodal points of the h;-triangulation of F;; and zero on
0F;j, and I, is the interpolant. Using Lemma 4.5 from [9], we have

H;
I, (0, w)> 4 < C(1+log W V[l 31 0,y
1

00 ij
To estimate the second term, note that ug = u; ¥, = @; on Fi]- since it is the mortar.
Using Lemma 4.4 from [9], we get

a0k, uwo)ll> = (@)*| I, 0F,|I° <

Hozo(FiJ) HOQO(F“)
—1 Hi 2
< CH;'(1+log E)HWHL?(BQI)‘
Thus

(Fij)p)2 <C’11—I—£2‘2 H._lllﬂ 112
||w; ||HO%(77n<i)) < C{(1 +log hi) luillg o,) + H; (1 +log I Muillz2 00, -
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Using now a simple trace theorem and the Poincare inequality, we have

(Fij) H;
||wi ! ||i10%0(7m(i <C(1+10g h ) IullHl(Q)

Multiplying this by p; and summing with respect to 7,,, we get

(29) Z b () )<C(1+log1}j) a(u,u).

Ym CT

We now prove that

(30) Z ST ™, )<C(1+logIZ) a(u, u).

=1z €Wip
We first note that by (26) and Lemma 4

. . H;
b (™ ™) < Cwl(an)a(@r, ®1) < Cpihi(1 + log 3 wd(z).

Summing over the z; € Wy, we get

S opY )<sz(1+10g ){Iluzllu
TR €Wip
(31) +hi > up(ak)}
2k €EWin
Using a well known Sobolev-type inequality, see for example Lemma 4.3 in [9], we
have
H; 9
(32) lluill 72w,y < C(1+log 3ol @)
To estimate the second term, we note that, see (17),
(33) hi Y ud(zx) < CHi()? < Clluillfq,)-
zr EWip

Here we have also used a simple trace theorem. Substituting (32) and (33) into
(31), and using the Poincare inequality, we get

H;

W), (W,

Z b (™ ") < (1 4+ log 2 I, ) piluil i q,)-
zr EWip

Summing now with respect to i, we get (30).

To get (24), we add the inequalities (27), (29) and (30). The proof of Theorem
1 is complete.
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