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1. Introduction

When using domain decomposition methods without overlapping, one can focus
on displacements, such as primal approaches, [11] ..., or on efforts, such as dual
approaches, [6]. Since the LATIN approach used herein allows interfaces to play
a major role, both displacements and efforts are the unknowns; it is a “mixed”
approach. A general drawback with domain decomposition methods is the decrease
in convergence as increases the number of substructures. Using a global mechanism
to propagate information among all substructures can eliminate this drawback.

We are proposing herein to take into account the introduction of two scales when
decomposing the structure into substructures and interfaces. As a first step, the
implemented version is concerned with linear elasticity. The large scale problem
is then used to build a global exchange of information and therefore to improve
performance. Moreover, comparisons with other decomposition methods, and in
particular with several variants of the FETI method, are proposed.

2. Formulation of the problem

The studied structure is seen as the assembly of two mechanical entities: sub-
structures QF, E € E, and interfaces LEE". Each possess its own variables and
equations. The principles of this one-level approach have been described in [9], its
feasibility has been shown in [10], and [2] proposes some significant examples.

Since we are dealing herein with linear elasticity, only the final configuration is
of interest.

2.1. Substructure behaviour. Each substructure Q% is submitted to the
action of its environment (neighbouring interfaces): an effort ¥ E and a displacement
field W on its boundary 9QF. Eventually, f , 1s a prescribed body force (Figure 1).

For each E € E, (WE: F*) has to satisfy:

e kinematic equations:

(1) WUF eur, F=cU" and Ubge =WF
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FIGURE 1. Substructure and interface

where UF is the set of displacement fields defined on QF which possess a
finite energy, and €F is the associated strain.
o equilibrium equations: a stress field o balances f J and FF | ie.

(2) YU*eU®, / Tr[oEe(U*)]dQ = / £, UdQ+ / FF.U*ds

0F QE a0~

e constitutive relation: herein, the behaviour is linear and elastic (K denotes
Hooke’s tensor) and

(3) of = Kef

s denotes the set of unknowns (wE JFE UF oF ) for E € E, that characterises
the state of all substructures.

2.2. Interface behaviour. The state of the liaison between two substructures
QF and QF is defined by values on its surface of both the displacements and efforts
(WE, FEYy and (WF ; FF') (see Figure 1). For a perfect liaison, they must satisfy:

(4) FE+FE' =0 and WF=w?

Of course, other kinds of liaison can be expressed, such as the prescribed effort
liaison, the prescribed displacement liaison, and the unilateral contact liaison with
or without friction, as described in [9], [2]. Here, we are only dealing with perfect
interfaces that continuously transfer both efforts and displacements.

2.3. Description of the one-level algorithm. According to the framework
of LArge Time INcrement (LATIN) methods, equations are split into two groups in
order to separate difficulties, [10]:

e I' is the set of unknowns s satisfying each interface behaviour (4), and
o Ay is the set satisfying each substructure behaviour (1), (2), (3).

The solution s., searched is then the intersection of Aq and I'. A two-stage
algorithm successively builds an element of Agq and an element of I'. Each stage
involves a search direction; these are the parameters of the method:

o the local stage uses the search direction E*: (E -F) - k(ﬂ -W)=0
Finding § € T in such a way that § — s, belongs to the search direction
E* is alocal problem on the interfaces. For instance, with perfect interfaces,
the solution is explicitly written: W = W’ = W+ W) -k Y(F+ F)]
and F = —F' = Y[(F — F') — k(W — W)]. Tt can easily be parallelised.
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FIGURE 2. Model problem and example of decomposition into 16
substructures and interfaces
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FIGURE 3. Convergence rate versus number of substructures

o the linear stage uses the search direction E=: (F — F) + k(W — W) =
Finding s,+1 € A4 in such a way that s,;; — § belongs to E™ is a
global problem on each substructure. When using the search direction, (2)
is an elasticity-like problem on each substructure, with Robin boundary
conditions. It can be solved concurrently once the substructures have been
distributed among the available processors, along with their neighbouring
interfaces.

Finally, a convergence check can be built with ||§ — s,||. More details for this one-
level approach can be found in [10]. In the case of linear elasticity, this algorithm is
similar to the one proposed in [8], [12], [7], i.e. it is one version of Uzawa algorithm.

3. A 2-level extension

Let us first consider the model problem of a slendered bidimensional structure
submitted to a parabolic bending loading (see Figure 2). The reference (U;0)ref
here is the direct finite element solution without decomposition. It allows us to
define the convergence rate in energy norm:

/ Tr[(on — orer) K “on — Orer)]dQ

€n+1
T=—log —
n

where e

TroefK™ Uref]dQ
Q

Figure 3 presents the averaged convergence rate (up to convergence: e, < 0.1%)
versus the number of substructures. It illustrates a well-known behaviour of domain
decomposition methods: slowing the convergence rate when increasing the number
of subdomains, [1]. To remedy such a drawback, we select herein to express the
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A 2-LEVEL AND MIXED DOMAIN DECOMPOSITION 241

solution on two different scales:
(5) (UE E) (Ul»Ul) (U2’02)

1 and 2 denote unknowns related to large scale (effective quantities) and related to
corrections on the fine scale respectively. The large scale problem is kept global in
order to build the global information exchange mechanism, while the fine scale is
managed with the previous substructuring technique.

Each level can arise from a different model for the structure; here, they are
related to 2 different meshes with embedded elements. Let ©; and £, denote these
meshes. The principles of such a technique are described in [4]. As in the multigrid
terminology, information transfer between levels is performed with a prolongation
operator, P, and a restriction operator, R = P?. (U,&) is the effective part
of the solution, i.e. the part defined on the mesh ; (then, U {3 = PEU and

o= Z REoF). With embedded grids, the prolongation is straightforward and
E€E

performed with a classical hierarchical finite element projection, as hierarchical
bases are used for splitting ¥ into U; and UF. With such a splitting, the global
equilibrium equations become:

(6) VUi eth, VUsely, > [ Trlo(e(U})+e(Us))d =
EcE’
_ Ui+1,U3)do / P Usds
1%3/05 <id 1 +1, U 2 Z 0E 2

with 0 = 01 + 02 = Ke(U,) + Ke(U,), and the search direction on fine scale
F§ = F5 + kW5 — kWF, with W5 = UZ 5z, it leads to:

e on the fine scale 2, for each substructure S—IQE, the stress field o’ also has to
balance —of’ = ~Ke(U,qr) = —~Ke(PFU):

(7) VU e UF, / Tre(U,)Ke@dQ+ | U, - kUSdS =
QE oNE

= id-Q;dQ+/

(EE + kWE) . U3ds - / Trle (U, Ke(U3))d9
QF 90E QF

The discretised displacement-oriented formulation of the problem (7) is
(8) (K1 + K°DUS] = [f5] + [f*] = [Bao?]

[K®] and [k*] denote rigidity matrices (constant along iterations), arising
from material and search direction respectively, | fE ] is a load due to FZ +
kWX, and B, is the operator giving the generalised forces that balance a
given stress field on mesh Q¥. We can notice that the problem to solve is
global on the substructure and is elasticity-like in nature.

e on the large scale 1,

(9) VUI e,

/ Trle(U, ) Ke(U?)]dQ = / f,oUrd =" [ Trle(U,)Ke(U3)]d

E€E QF
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TABLE 1. 2-level algorithm

Large scale — 1 processor Fine scale — n processors
Initialisation Initialisation

initialisation of [B1d2] = 0 computing contributions [B17)or

receiving [B104)|ne «— | «+— sending [B,d4]jor

assembling the contributions initialisation of § =0

factorisation of [K] factorisation of [KE] + [k¥]

forward-backward on (10)

sending U — | — receiving U

computing coupling term [Boof]
forward-backward on (8)

Loop over iterations Loop over iterations
computing coupling term [B)G]os
receiving [B103])oe — | «— sending [B62]jor
assembling the contributions local stage,
forward-backward on (10) convergence check «——
sending U — | — receiving U

computing coupling term [Boof]
forward-backward on (8)

with U} = PU, the last term is: — Z/ Tr[RFe(U,)Ke(U)])dQ. As
EeE /P
the stress field & must balance —G9 = — Z REKe(U f ), the scales are not

ECE
separated. The discretised displacement-oriented formulation of the problem

(9), with &4 arising from external loads, is:
(10) [K\][U] = [B1Ga] — [B172]

The solution is searched successively from the two levels within each LATIN
iteration on the substructured fine scale, in a fixed point method, as described in [4].
The linear stage is then performed on both scales, while local stage is still the same
as for the one-level approach but only deals with fine scale quantities: (WE; FF).
Table 1 describes the algorithm. It has been implemented in the industrial-type
code CASTEM 2000 developed at the CEA in Saclay, [13].

For the previous example, the convergence rate has been illustrated in Figure 3.
The quasi-independence of the convergence rate with respect to the number of
substructures shows the numerical scalability of the 2-level LATIN method. One
can notice that for this example, the new optimum value for the search direction is
now related to the interface length (Lo has then be chosen as equal to 0.25 times
the length of one substructure). It is no longer characterised by the behaviour of
the whole structure [2], but becomes a substructuring characteristic, see [4].

4. Comparisons

Several domain decomposition algorithms currently use a global mechanism,
like the FETI method, [6]. It produces at each iteration a solution that satisfies
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FIGURE 4. Meshes of the large-scale problem (a,b,c,d) and of the
substructured problem (assembly of substructures and interfaces)

equilibrium through the interfaces, and that has to accommodate global equilib-
rium on each subdomain. This leads to the resolution of a global problem on all
subdomains to find their rigid body movement, related to the large-scale problem.

The proposed example at this time is a tridimensional beam with a parabolic
bending loading at one extremity. 32 substructures and a mesh with 20-node cubic
elements are considered for this problem (one substructure has 3675 d.o.f. and
requires 12.8 Mb of storage for the factorised rigidity, while the direct problem
has 95043 d.o.f. and requires 1252 Mb). For the large scale, the influence of the
discretisation with 8-node cubic elements is studied, as also shown in Figure 4.

Figure 5 shows error e, versus iterations, for the FETI method without pre-
conditioning, then with lumped preconditioning, and finally with optimal Dirichlet
preconditioning. These three computations have been performed by F.-X. Roux
with the PARAGON machine at ONERA-Chatillon, France. The previous single-level
LATIN algorithm as well as the 2-level extension for the different large-scale dis-
cretisations are also reported. These computations have been performed on the
CRAY-T3D computer at IDRIS in Orsay. Both of these parallel computers have
been used with 32 processors. Since time comparisons between two approaches de-
pends on the processor, the intercommunication network, the compilers, disk usage,
etc., we retain only the major tendencies by weighting the previous results; after
analysing the costly parts of simulations, we identified CPU costs of initialisations
for the FETI approach and the LATIN single-level to 1, in terms of CPU equivalent
time (accumulated on the 32 processors). Afterwards, the FETI iteration and the
2-level LATIN iteration for the case (a) are identified in terms of cost. Figure 6 then
shows the evolution of error versus this CPU equivalent time.

The cost for a direct finite element approach is 18 in terms of CPU equivalent
time. When using the multi-frontal scheme, [3], [5], the condensed Schur comple-
ment problem has 19875 d.o.f. and requires 329 Mb of storage. The costs are 3 for
local condensations and forward-backward substitutions (which can be performed
concurrently) and 2.6 for the resolution of the condensed problem (sequentially).
Total cost of the analysis is then 5.6 in CPU equivalent time. The cost of a local
condensation is higher than a simple factorisation due to the higher fill-in of the
local rigidity matrix (in order to treat the boundary d.o.f. at the end).
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FIGURE 5. Comparison of methods — error versus iterations
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One can initially note that when increasing the large-scale problem size of the
2-level LATIN algorithm, the error indicator starts out lower at the first iteration
because the large-scale first solution is used to initiate the algorithm. Another effect
is the increase in the convergence rate (Figure 5), but since iteration costs are also
increasing, the two effects cancel each other for the proposed example, (Figure 6).

5. Conclusions

The originality in both the use of the large time increment method and a
substructuring approach is the major role played by interfaces, which are considered
as structures in their own right. This leads to a “pure parallel” algorithm that can
be improved when using a 2-level scheme. The consequence is the generation of
a global problem to solve on the whole structure at each iteration. The resulting
algorithm is then numerically scalable.

The ultimate goal is the extension to non-linear structural analysis with a large
number of d.o.f. One approach which is currently under development deals with a
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A 2-LEVEL AND MIXED DOMAIN DECOMPOSITION 245

2-level version more suited to homogenisation techniques, completely merged with
non-incremental LATIN methods.
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