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1. Introduction

A reservoir may consist of several different types of sediments, which in general
have different porosity, ¢, absolute permeability, K, relative permeabilities, k,; ,
and capillary pressure P, . In this paper we will study two phase, immiscible flow, in
models consisting of one or two different types of sediment. Each of the sediments
may be heterogeneous. The phases are water (w) and oil (o), but the results may
easily be extended to groundwater problems where the phases may be water and
air or a non aqueous phase.

Such models represent a very complex and computational large problem and
domain decomposition methods are a very important part of a solution procedure.
It gives a good tool for local mesh refinement in regions with large gradients such
as fluid fronts, interfaces between different sediments or at faults. If the models
are heterogeneous, parameters in the models may be scale dependent, which means
that mesh coarsening may be possible in regions with small gradients.

Let S = S,, denote the water saturation. Then the incompressible displacement
of oil by water in the porous media can be described by the following set of partial
differential equations, given in dimensionless form:

(1) V.u=q(x,t),
(2) u=-K(x)M(S,x)Vp,
®) 860% +V - (f(S)u) - €9 (DS, x)VS) = ax(x,1).

Here, u is the total Darcy velocity, which is the sum of the Darcy velocities of the
oil and water phases:

u=u,+ Uy
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FiGURE 1. (a) Computational domain showing two different
regions with different physical properties connected through an
interior boundary T'. (b) Capillary diffusion, as functions of
saturation shown for permeabilities 1, 5 and 10.

Furthermore, p is the total fluid pressure given by p = 3(pw + po), ¢i(x,1),1 =
1,2 denotes contribution from the injection and production wells in addition to
capillary pressure terms, which are treated explicitly in (1). K(x) is the absolute
permeability, M (S, x) denotes the nonzero total mobility of the phases and ¢(x) is
the porosity. A reasonable choice for the porosity is ¢ = 0.2. The parameter ¢ is a
small (107! — 10~*) dimensionless scaling factor for the diffusion.

Equation (3) is the fractional flow formulation of the mass balance equation
for water. The fractional flow function f(S) is typically a S shaped function of
saturation., The capillary diffusion function D(S,x) is a bell shaped function of
saturation, S, and has an almost linearly dependence of the permeability K(x).
Further, D(0,x) = D(1,x) = 0. In Figure 1, a capillary diffusion function is shown
for different permeabilities.

For a complete survey and justification of the model we refer to [5]. We
have neglected gravity forces, but the methods described can also be applied for
models where gravity effects are included [17]. The following analytical form for
the capillary pressure is chosen|[35]:

1-8
VS’
We note that the capillary pressure depend on the permeability of the rock.
The phase pressures and the capillary pressure are continuous over a boundary

I', separating two sediments. Furthermore, the flux must be continuous [12, 14, 4,
23] which gives the following internal boundary conditions:

(5) Pe™(877) = PAH(S™)

(4) Pc(S,x) = 0.9¢ 9K 01

(6) ('™ —u").n" =0
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FIGURE 2. From left to right I'g, I'y, I'g, I'y. The + and — sign
represent the functional value +1 and -1. Ty is the scaling function.

(7)
(F(8T )u—eD™ (ST, x)VS) - = (f(")u — D" (ST, x)VS™) -n'

Here (-)'~ and (:)'* denote the left and right hand side value at the interior
boundary I', and n' is normal to the boundary.

Since the capillary pressure depends on both the saturation and the
permeability, the continuity of the capillary pressure leads to discontinues
saturation over the interior boundary. Also, the flux conservation (7) create large
gradients in the saturation over an interior boundary separating two different
sediments. This adds extra complexity to our problem especially when a saturation
front passes an interface.

2. Representation of the Permeability

The permeability K may have several orders of variation and the geometrical
distribution can be very different in the sediments. Further, fractures and faults
add to the complexity. Therefore, we need a good method for the representation of
K. Hierarchical basis may be such a tool [27, 18].

The simplicity of the Haar system makes it an attractive choice for such a
representation. Further it gives a permeability representation which is consistent
with a domain decomposition solution procedure. We will restrict ourselves to two
space dimensions and consider the unit square as our computational domain €.
The Haar basis of scale 0 and 1, for two space dimension, is given by the set of
functions in Figure 2.

On each mesh of 2 x 2 cells, any cell wise constant function can be given a
representation as linear combinations of I'y, I's, I'g and I',, where the coefficient
of 'y has a nonzero coefficient only for mesh of scale 0, which is the whole
computational domain §2. A 2-scale Haar multi resolution analysis, built on the
scaling function Ty [6, 9], will be used to represent the permeability.

Let the absolute permeability K be a cell-wise constant function on Q with
2N+1 cells in each direction.

Then K can then be expanded in terms of the Haar basis:

N 2N 2N
(8) K=Kolo+> > > > Kyuliu
i=1 j=0 k=0 l=a, 3,y

where the index i gives the scale and j and k give the translations of the two
dimensional wavelet I'; ;4.
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We should note that this representation is easily extended to three space
dimensions. If the permeability is given by a tensor, the wavelet representation
should be used for each of the components. Also, other types of wavelet may be
used. Especially if an overlapping domain decomposition method is used, a less
localised wavelet representation should be useful.

3. Solution procedure

The governing equations (1), (2) and (3) are coupled. A sequential, time
marching strategy is used to decouple the equations. This strategy reflects the
different natures of the elliptic pressure equation given by (1) and (2), and the
convection dominated parabolic saturation equation (3). The general solution
strategy is published earlier [15, 10, 25, 8, 21|, so we only give the main steps in
the procedure.

3.1. Sequential Solution Procedure:

e Step 1:
For t € [tn,tn+1], solve the pressure and velocity equations (1, 2). The
velocity is a smoother function in space and time than the saturation.
Therefore we linearize the pressure and velocity equations by using the
saturation from the previous time step, S = S(t,) . The pressure equation
is solved in a weak form, using a standard Galerkin method with bilinear
elements [2, 31].

Then the velocity is derived from the Darcy equation (2), using local
flux conservation over the elements [31]. This gives the same accuracy for
the velocity field as for the pressure. The mixed finite element method would
be an alternative solution procedure. In many cases, it is not necessary to
solve the pressure for each timestep.

e Step 2:
A good handling of the convective part of the saturation equations, is essen-
tial for a fast and accurate solution for S. We will use an operator splitting
technique where an approximate saturation S is calculated from a hyper-
bolic equation:
For t € [tn, tn+1], with u given from Step 1, solve:

dS _  a§ =
where f is a modified fractional flow function [15, 8, 21].
e Step 3: .

The solution S provide a good approximation of the time derivative and the
nonlinear coefficients in (3).

For t € [tn,tn+1], and Sy = S, solve:

9S;
(10) or +V. (b(Si_l)Sill - D(Si_l) . VSZ) = QQ(X,t)

for i = 1,2,3.... until convergence, where b(S)S = f(S) — f(S). Equation
(10) is solved in a weak form [15, 8], using optimal test functions [3].
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e Step 4:
Depending on the strength of the coupling between the velocity and the
saturation equation, the procedure may be iterated.

3.2. Domain decomposition. The pressure (1), (2) and saturation equation
(10) represent large elliptic problems. The equations are solved by using a
preconditioned iterative procedure, based on domain decomposition [32]. The
procedure allows for adaptive local grid refinement, which gives a better resolution
at wells and in regions with large permeability variations such as interfaces between
two types of sediments. The procedure also allows for adaptive local refinement
at moving saturation fronts. Assuming a coarse mesh )¢ on the computational
domain €, we get the following algorithm [29, 8, 34, 33|:

1. Solve the splitted hyperbolic saturation equation (9) on the coarse grid Q¢,
by integrating backwards along the characteristics.

2. Identify coarse element that contain large gradients in saturation and
activate refined overlapping/non overlapping sub grids £ to each of these.

3. Solve equation (9) on the refined sub grids €y, by integrating backwards
along the characteristics.

4. Using domain decomposition methods, solve the complete saturation
equation with the refined coarse elements. The characteristic solution S
is used as the first iteration of the boundary conditions for the sub domains
Q.

As is well known, algorithms based on domain decompositions have good parallel
properties [32].

We will present result, for 2D models, but the procedure has been implemented
and tested for 3D models [16].

4. Coarse Mesh Models

With the solution procedure described in Section 3, pressure, velocity and
saturation will be given on a coarse mesh in some regions a and on a refined mesh
in the remaining part of 2. This means that the model equations have to be
given for different scales. Several upscaling techniques are given in the literature
22, 1, 11, 26, 18, 7, 30, 24]. In this paper, we will limit the analysis to the
upscaling of the pressure equation. The upscaling of the saturation equation is less
studied in the literature [1, 24].

The goal of all upscaling techniques is to move information from a fine grid to a
coarser grid without loosing significant information along the way. A quantitative
criteria is the conservation of dissipation:

(11) e=KVp-Vp

A related and intuitively more correct criteria, is the conservation of the mean fluid
velocity (v), given by:

(v) = =KesrVip)
(12) V-(v)=0
where K. ¢ is an effective permeability.

In our approach it is natural to use conservation of the mean velocity as the
upscaling criteria, although the method also conserves dissipation fairly well [18].
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4.1. Wavelet upscaling. A Multi Resolution Analysis (MRA), [9], defined
on L2(R) x L*(R) consists of a nested sequence of closed subspaces of L?, x L? such

that:

(13) ecWVicWycVo e
(14) Ujez Vs = L*(R) x L*(R)
(15) njez Vj = {0}

(16) Vier =V, UW,

(17) f@)eV; = f(2z) eV

Here, W is the orthogonal complement of V; in V;;1. The permeability given
by (8) satisfies such a hierarchical representation. Let j = 0 and j = J be
respectively the coarsest and finest scale to appear in K. Upscaling in this context
is to move information form scale j = J to a coarser scale j = M, M < J.

In signal analysis, "highcut” filters are commonly used to clean a signal from
its high frequency part which is considered to be negligible noise. We will apply to
same reasoning on K. Such an upscaling will keep all large scale information, while
variation on scales below our course grid will be neglected in regions where the flow
has a slow variation. Moderate fine scale changes in the permeability, give rise to
heterogeneous fingers [24] and have little influence on the global transport. But
this upscaling technique is only valid in the case that the coefficients on the scales
J,J—=1,..., M are small compared to the coefficients on a lower scale. This would
not be the case for narrow high permeability zones. However, in regions with high
permeability channels, the solutions will contain large gradients, which mean that
we should use a refined grid to resolve the dynamics. A coarse grid solution based
on upscaling, will loose too much information in such regions.

4.2. Highcut upscaling. We will give an example of the highcut upscaling
techniques on an anisotropic permeability field. Such a field is chosen because it
is difficult to handle using simple mean value techniques. The coefficients which
determine the permeability field at each scale are read from a file, but if we want to
work with measured permeability fields, a subroutine can determine the coefficients
on each scale recursively using standard two scale relations from the wavelet theory,
[9].

The permeability field is generated by introducing large coefficients on a
relatively low level. The goal is to model a case where we may have several regimes of
permeability which on their own may be isotropic, but when put together constitute
a very complex reservoir.

Figure 3 shows the permeability field for a highcut upscaling as 3-D histograms.
We can clearly see the complexity and anisotropy of the permeability field.
Upscaling to scale 3 gives a massive loss of information, because the scale 4
coefficient are fairly large.

Table 1 displays the coefficients used. The aspect ratio between the highest
and lowest permeability is about 10 in this case [18]. The highest scale is 7 which
gives 27 x 27 cells, and the permeability value on scale 0 is 1.0. K., K3 and K,
are the coeflicients of 'y, I'3 and T’y respectively (2).
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Scale 5 Scale 4

FIGURE 3. The figure shows the permeability field for a highcut
upscaling in a 3-D histograms. Scale 7 — 128 x 128 cells, scale 6
— 64 x 64 cells, scale 5 — 32 x 32 cells and scale 4 — 16 x 16 cells.

TABLE 1. The table show the value of the coefficients on each level.

‘Level K, K; K

N
1 03 01 02
2 0.0 1.0 09
3 1.0 09 0.8
4 -04 03 02
) 0.5 02 03
6 0.1 -02 -03
7 02 01 00

5. Model error

As clearly shown in Figure 3, upscaling of permeability introduces modeling
error. In order to develop a domain decomposition based simulator, the model has
to be given on different scales. Therefore, we need an a posteriori error estimate
of the modeling error introduced by the upscaling if we want to control the total
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error in the computation. Such an error estimate can give the base for an adaptive
local refinement procedure for the simulation of heterogeneous porous media.
Defining the bilinear form:

A:HY(Q) x H(Q)— R

(18) Alp, ) = /Q Vp- KVadx

Then, the fine scale weak form of the pressure equation (1, 2) is given by:
Find p € H'(9), such that

(19) Alp,9) = (q1,0), Vo € Hy(Q)
Denoting the upscaled permeability tensor by K', we get the equivalent upscaled
model:

Find p° € H'(Q), such that

(20) A 0) = (g,0). Vo€ Hy ()

The modeling error introduced by replacing the fine scale permeability tensor
with an upscaled permeability tensor may be given by:
(21) €model = HV - VO”
where || - || is a norm defined on L*()) x L*(2). If we define a norm as given in
[26], we can avoid the appearence of the fine scale solution on the right hand side
in the error estimate :

Let w € L*(Q) x L*(), then the fine scale-norm || - ||, is given by:

(22) whic-: = [ (v K 'w)da
)

Where (,-) is the Buclidean inner product on R?. This is an L? norm with the
weight function K~'. If we choose K as the weight function we get the energy
norm, which is consistent with (22):

(23) ||“'”f( = A(w,w) = / Vw - KVwdzx
Q

These norms will also appear in a mixed finite element formulation.
The following can be proved [18, 26]:

5.1. A posteriori error estimate. Let K and K° be symmetrical and
positive definite tensors. Assume that K° is the result of an upscaling technique
applied to K, such that:

(24) /{ KV (K, (K)o < / KVp, Vplde

0
and

(25) K|~ < M and |[K°|[,~ <m <M

Let p and p be solutions of respectively eq.(20) and eq. (19), and let v and v°
be the velocities given by v = —KVp and v’ = —~K"Vp". We have the following
error estimate:
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Scale 0 Scale 1 Scale 2 Scale 3
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FIGURE 4. The figure shows a nested sequence of subdomains,

0, C Q.
(26) v —v'k-1 < [Tov°lk-1
and
(27) Ip =1l < IMoVP°llx

where (Ip)? =1 - K 'K

The assumption (24) states that the dissipation in the problem is constant or
decreasing during upscaling. Conservation of dissipation is one of the criteria used
for judging the quality of an upscaling procedure see Section 4. The permeability
representation given in Section 2 is consistent with the assumptions given in the
theorem.

The aposteriori estimate of the modeling error is built on the results in [26].
It is proved [26] that the upscaling based on this norm gives very good results
and as noted, the estimate does not involve the fine scale solution. The error es-
timate gives the basis for an adaptive upscaling technique. Together with domain
decomposition, it gives a strong modeling procedure. The following algorithm is
consistent with the hierarchical permeability representation given in Section 2:

Algorithm for an Adaptive Domain Decomposition Solution
Solve on scale 0. (Global coarse grid solve) This gives P} and v{,
While( error > tol and scale < mazscale)
Solve on all active local domains using the MRA representation.
(After this step our data structure contains only inactive domains.)
for(i = 1; i < number_of-domains_on_this_scale; ¢ + +)
if(local_error > tol)
Generate four new active subdomains of this local domain.
end if
if(local_error > local_error_prev)
local_error_prev = local_error
end if
end for
error = local_error_prev
end while( ... )

The separation of the domains into two classes, active and non-active, ensures
that we do not waste time recomputing on domains which are not split up as we
move up in the hierarchy. Thus the iteration will just involve these four sub domains
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FIGURE 5. Experimental setting (a) and initial saturation profile (b).

if only one domain is refined. On the other hand if two neighboring domains are
refined, the iteration process will involve eight domains. Figure 4 shows a situation
where all scales from scale 1 to scale 3 are present in the solution.

6. Numerical experiments

In this section we will present numerical experiments to demonstrate the effect
of the error estimate and the “high-cut” upscaling technique. The computations
will be based on the permeability data given by Figure 3. All experiments are based
on the “quarter of a fivespot” problem. Our computational domain will be the unit
square. Figure 5 shows a typical configuration along with the initial saturation
profile.

6.1. Reference Solution. The main objective of the experiment is to better
understand the behavior of the error estimate in theorem (5.1) together with domain
decomposition methods, based on local solvers [18]. We define the effectivity
indices, 7k, [28], measuring the quality of the error prediction as:

ITOVO

(28) K = ”VO — v”%<‘1

To create a reference solution, we apply a global solver and identical grid on all
scales. This grid has 128 x 128 cells and corresponds to scale 7. This means that on
scale 7 each cell is assigned a permeability value and we use scale 7 as our reference
scale. Figure 6 show the velocity and saturation fields for scale 7 and 4. The results
are based on the permeability field given by Figure 3. The most apparent feature
is the complexity in the fields. Both absolute value and direction changes radically
over short distances. The saturation are shown at ¢t = 0.14. We see that the main
flowpattern are the same for the models, but as expected, some of the small scale
variation is lost on scale 4 [24].
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Y-Axis
Y-Axis

(a) Velocity field for Scale 7 (b) Velocity field for Scale 4

saturation at time=0.14 saturation at time=0.14

Y-Axis
Y-Axis

X-Axis

X-Axis

(c) Saturation field for Scale 7 (d) Saturation field for Scale 4
FIGURE 6. The figure shows the velocity and saturation fields
for a highcut upscaling with global solvers. Figure (a) and (c)
represent the reference solution. Scale 7 — 128 x 128 cells and

scale 4 — 16 x 16 cells.
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TABLE 2. The effectivity indices for nk for scale 4 - 6

Scale 1k
6 1.45
5 1.48
4 1.54

Y-Axis
Y-Axis

(a) nk = 1.35, 24 x 24 sub domains (b) nk = 1.75, 9 x 9 sub domains

FIGURE 7. The figure shows the velocity field for a highcut
upscaling technique coupled with localized solvers through the
adaptive upscaling algorithm. The results should be compared
with the reference solution (Scale 7) given in Figure 6

Table 2 shows the effectivity indices for each scale, which shows that nk vary
as expected.
It can be shown that dissipation is fairly well conserved in this case [18].

6.2. Local solvers. In this section we will test the local adaptive upscaling
algorithm (5.1) together with local solvers [18]. To capture the global
communication in the problem we had to apply coarse grid solvers at each scale.
This was apparent only when the velocity field showed radical changes in both
absolute value and direction. For permeability fields where these changes were less
rapid a coarse grid solver was no longer necessary [18]. The domain decomposition
has been based on the multiplicative Schwarz algorithm. Figure 7 shows the velocity
field for an upscaling with the adaptive algorithm (5.1). The plot shows the velocity
field corresponding for two values of the error estimate. Note that even when the
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producer

/

Injector

FIGURE 8. The computational domain €.

quality of the error estimation is poor, ng = 1.75, most of the global transport is
still captured using only 9 x 9 local domains. The results in Figure 7 should be
compared to the reference velocity field given in Figure 6. As the quality of the error
estimation improves the solution is almost identical to the reference solutions [18]
and even for nk = 1.35, 24 x 24 sub domains, the velocity field is very accurate. The
iteration error was chosen very small such that the iteration error did not influence
on the estimate of the modeling error. The two solutions will, however, never be
identical due to large areas where the mean velocities are small such that the mesh
is not refined. The differences are not visible on the plots and have only a negligible
effect on the global flow.

In most cases, the local coarsening of meshes by upscaling, will reduce the
computational cost substantially. With the adapive technique proposed, the
modeling error can still be kept under control.

7. Two sediment model

The solution procedure described in Section 3 can be extended to models
consisting of several types of sediments. We will limit the presentation to a two
sediment model.

We consider a rectangular domain {2 which has an interior boundary I', at
xz = 0.5, separating the two sediments. We assume that both ; and €, are
homogeneous. All the parameters like absolute and relative permeability and
capillary pressure, may be discontinues across such interfaces [36, 19, 12, 13, 14,
20]. We will assume that only the absolute permeability is discontinues across T,
which means that also the capillary pressure (4) is discontinues. In order to satisfy
the interface relations (5) and (7), the saturation S also has to be discontinues
across I'.

This discontinuity is handled by introducing discontineous trial functions
[12, 14] in the weak formulation of the saturation equation (10). The jump
discontinuity in the trialfunctions [12, 14] are determined from the interface
relations (5) and (7). A problem with an injector well in lower left corner and
a production well in upper right corner, as shown in Figure 8 is studied. The
numerical results obtained with the adaptive local grid refinement at the front
and a fixed local refinement at the interior boundary in [12, 34, 13] are compared
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TABLE 3. Time and well data for the test cases.

Parameter | value | Decription

dt 0.001 | time step

t [0,48] | time intervall
inj_ rate 0.2 | injection rate
prod._ rate -0.2 | production rate

TABLE 4. The permeability fields defining test cases a and b.

case: | K(1) | K(Q2)
a 1.0 0.1
b 0.1 1.0

with equivalent results computed on a uniform global mesh. The local refinement is
obtained by domain decomposition methods described in Section 3. The agreement
between the two approaches is very good.

We choose the same type of initial condition for the saturation as given in
Figure 5. This represents an established front, located away from the injection
well.

Saturation solutions will be shown at four time levels, t = 0.24, and t = 0.48.
Input data are given in Table 3 and Table 4, while the injection and production
rates are given in Table 3 together with the time parameters.

Figure 9 gives computed saturations for the test cases a and b in Table 4. In
Figure 9 (a) and (c) (Testcase a) water is injected in a high permeability sediment
and oil is produced in a low permeable sediment. In Figure 9 (b) and (d) (Testcase
b) water is injected in a low permeable sediment, and oil is produced in a high
permeable sediment.

The total Darcy velocity and the capillary diffusion depend on the permeability
field K. The effects of different permeabilities and capillary forces in the two regions
; and Q9 combined with the effect of the boundary conditions (5), (7), are clearly
seen in Figure 9 (a) - (d) . The saturation jump at the internal boundary is positive
for testcase a and negative for testcase b [12, 14].

We observe that the saturation front is more smeared in the high permeable
region than in the low permeable region, consistent with the magnitude of the
diffusion term as given in Figure 1.

As noted, the results shown are computed both with uniform grids and with
local refinement based on domain decomposition [12]. The grid is adaptively refined
at the saturation fronts [8, 12] and at the internal boundary I". Except for small
interpolation effects at the boundary between the coarse and the refined meshes,
the results are similar.

The results are extended to models where both absolute and relative
permeability and capillary pressure are given by different functional form in the
two sediments [12, 14]. Work is under way to extend the models to heterogeneous
multisediment models and models with fractures. The local refinement of meshes
at interfaces and saturation fronts or the local coarsening of meshes by upscaling,
will reduce the computational cost substantially.
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saturation at time=0.24 saturation at time=0.24

2 2
! ¢ X—-Axis '
(a) t = 0.24 (b) t = 0.24
saturation at time=0.48 saturation at time=0.48
' ¢ X—-Axis !
(c) t =048 (d) t =0.48

FIGURE 9. Saturation profile for five spot problem at time levels
t =024, and t = 0.48. K(2;) = 1 and K(Q) = 0.1 in Figure
(a) and (c). K(£2;) =0.1 and K(Q2) = lin Figure (b) and (d).

8. Conclusion

In this work we have focused on solution techniques for two phase porous
media flow, where the models may be heterogeneous or consist of different types
of sediments. An adaptive upscaling technique is given. This gives a flexible and
powerful procedure for local grid refinement based on domain decomposition. Work
is under way to extend the methods to more complex models like flow in fractured

rock.
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