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1. Introduction

In recent years, parallel computers have changed techniques to solve problems
in various kinds of fields. In parallel computers of distributed memory type, data
can be shared by communication procedures called message-passing, whose speed
is slower than that of computations in a processor. From a practical point of view,
it is important to reduce the amount of message-passing. Domain-decomposition
is an efficient technique to parallelize partial differential equation solvers on such
parallel computers.

In one type of the domain decomposition method, a Lagrange multiplier for
the weak continuity between subdomains is used. This type has the potential to
decrease the amount of message-passing since (i) independency of computations
in each subdomain is high and (ii) two subdomains which share only one nodal
point do not need to execute message-passing each other. For the Navier-Stokes
equations, domain decomposition methods using Lagrange multipliers have been
proposed. Achdou et al. [1, 2] has applied the mortar element method to the Navier-
Stokes equations of stream function-vorticity formulation. Glowinski et al. [7] has
shown the fictitious domain method in which they use the constant element for the
Lagrange multiplier. Suzuki [9] has shown a method using the iso-P2 P1 element.
But the choice of the basis functions for the Lagrange multipliers has not been well
compared in one domain decomposition algorithm.

In this paper we propose a domain-decomposition/finite-element method for
the Navier-Stokes equations of the velocity-pressure formulation. In the method,
subdomain-wise finite element spaces by the iso-P2 P1/P1 elements [3] are used for
the velocity and the pressure, respectively. For the upwinding, the upwind finite
element approximation based on the choice of up- and downwind points [10] is
used. For the discretization of the Lagrange multiplier, three cases are compared
numerically. As a result, iso-P2 P1/P1/P1 element shows the best accuracy in a
test problem. Speed up is attained with the parallelization.
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2. Domain decomposition/finite-element method
for the Navier-Stokes equations

Let © be a bounded domain in R?. Let I'p(# #) and I'y be two parts of the
boundary 9€2. We consider the incompressible Navier-Stokes equations,

(1) Ou/ot + (u-grad)u + gradp = (1/Re)VZu+f  inQ,
(2) divu = 0 in Q,

3) u = gp onlp,

(4) o-n = gy only,

where u is the velocity, p is the pressure, Re is the Reynolds number, f is the
external force, gp and gy are given boundary data, o is the stress tensor and n is
the unit outward normal to I'y.

We decompose a domain into K non-overlapping subdomains,

(5) D= U---UQg, UnNY=0 (k#I).

We denote by ny the unit outward normal on 0. If Q, N (k # 1) includes an
edge of an element, we say an interface of the subdomains appears. We denote all

interfaces by I';,,m = 1,..., M. We assume they are straight segments. Let us
define integers k_(m) and k4 (m) by
(6) D=0 Ny (5 (m) < £ (m).

Let 7k be a triangular subdivision of ;. We further divide each triangle
into four congruent triangles, and generate a finer triangular subdivision 7j 4 /2.
We assume that the positions of the nodal points in 2, () and ones in Q_ ()
coincide on I';,. We use iso-P2 P1/P1 finite elements (3] for the velocity and the
pressure subdomain-wise by

(7) Vk,h = {'U € (C(Q-k))z, Vje € (Pl(e))Q,e € ’E,h/g,v =0 on 09 ﬂFD},

(8) Qen = {g€C(EW); qe € Pl(e),e € Thn},
respectively, we construct the finite element spaces by V}, = H;I::l Vi,n and Qp =
Hli{:l Qk,h-

Concerning weak continuity of the velocity between subdomains, we employ
the Lagrange multiplier on the interfaces. For the discretization of the spaces of
the Lagrange multiplier defined on I', (1 < m < M), we compare three cases (see
Figure 1):

Case 1: The conventional iso-P2 P1 element, that is defined by

9) Winh = (Xe, (m)lrm)?s

where Xi = {v € C(Q); v € P(e),e € Typs2}-

Case 2: A modified iso-P2 P1 element having no freedoms at both edges of
interfaces [4].

Case 3: The conventional P1 element, that is defined by

(10) Wi = (Yey (myalr,.)?s
where Yy = {v € C(Q%); v € Pl(e),e € Tun}-

The finite element space W), is defined by W), = ]_[,]\rf=1 W b
We consider time-discretized finite element equations derived from (1)-(4):
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FIGURE 1. Shapes of iso-P2(left), modified iso-P2(center) and
P1(right) basis functions for the Lagrange multiplier and a sub-
division 7y p, /2

ProBLEM 1. Find (u}™!,p}, A%) € Vi, x Q1 x W), such that

n+1 n

i u .
Yoy, € Vi, ('h—AE—Qv’Uh)h + b(vhva) +j(vh?)‘2) = <f,Uh>
_aill(u;llau"}wtvvh)
(11) —ap(uy,vp),
(12) Van € Qn,  blupt @) = 0,
(13) Yun € Wy, jlup™ ) = 0.

Forms in Problem 1 are defined by,

K
(14) (u,v) = Z/Q uy, - vrpdx,

(15) a(w,u,v) = Z/ wy, - graduy, )vgdz,
%
(16) ) = 23 [ Dlus D
ap(u, = Re 2 [, Uk Vi )azx,
K
(17) blv,q) = *Z/ ardivorde,
k=1 2k
M
(18) 50 = =X [ e = v,
m=1 ™m
) K
(19) Gy = ([ fowdes [ gy-uas)
k=1 Qp 0Ny

(,)n denotes the mass-lumping corresponding to (, ), a? is the upwind finite element
approximation based on the choice of up- and downwind points [10] to a;, and D
is the strain rate tensor.

We rewrite Problem 1 by a matrix form as,

]\7{ BT JT Un+1 Fn
(20) B O O pr o |=| o |,
J O O A" 0

where M is the lumped-mass matrix, B is the divergence matrix, J is the jump ma-
trix, F™ is a known vector, and U™*!,P™ and A™ are unknown vectors. Eliminating
U™t from (20), we get the consistent discretized pressure Poisson equation (8] of a
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FIGURE 2. Two upwind points(W,U) and two downwind
points(D,B) in the finite element approximation based on
the choice of up- and downwind points(left) and a domain-
decomposition situation(right)

domain-decomposition version. Further eliminating P™, we obtain a system of lin-
ear equations with respect to A”. Applying CG method to this equation, a domain
decomposition algorithm [6] is obtained. It is written as follows.

1. A©: initial data;

M BT U© F— JTAO

3. RO .= —ju©®; AAO .= RO); p.= (RO AAO);
4. For[:=0,1,2,..., until p < ecg do

() Sol M BT AU“> o =JTAND
)l B 0 APYD | T 0 ’

(b) Q:=JAUY; ol /( AD,Q);
(c) (U P, A)(’+1 (U P A)( aW (AU, AP, AN)D;
(d) RUA+D) R(l —a )Q

() pi= (R H0 RED) B = /o pi= gy

(f) AA (I+1) . R(H—l + ﬁ(l)AA(l)
In Step 2 and 4a, we solve the pressure(P(®) or AP(")) separately by the consistent
discretized pressure Poisson equation (its matrix is BM ~'B7) and afterwards we
find the velocity(U®) or AU®Y)). They are subdomain-wise substitution compu-
tations since BM~'B7T is a diagonal block matrix and it is initially decomposed
subdomain-wise in the Cholesky method for band matrices.

REMARK 1. The quantity A, » corresponds to o - n_ (m)ly,, -

REMARK 2. In the implementation, an idea of two data types is applied to the
Lagrange multipliers and the jump matrix. (Each processor handles quantities with
respect to 9. They represent either contributive quantities from 9 to UM '
or restrictive quantities from U 1 ' to 8. The detail is discussed in [5].) The
idea simplifies the 1mplementat10n and reduces the amount of message-passing.

REMARK 3. In order to evaluate a’f(uz,uﬁ,vh), we need to find two upwind
points and two downwind points for each nodal point (Figure 2(left)). In the
domain-decomposition situation, some of these up- and downwind points for nodal
points near interfaces may be included in the neighboring subdomains. In order to
treat it, each processor corresponding to a subdomain has geometry information
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FIGURE 3. An example of domain-decomposition(4 x 4) and the
triangulation(N = 32)

of all elements which share at least a point with neighboring subdomains (Figure
2(right)). The processors exchange each other the values of u} before the evaluation.
Hence the evaluation itself is parallelized without further message-passing.

3. Numerical experiments

3.1. Test problem. Let Q = (0,1)x(0,1)and I'p = 9Q (I'y = 0). The exact
stationary solution is u(z,y) = (z%y +y*, —2° —2y?)T, p(z,y) = 23 +y> —1/2, and
the Reynolds number is set to 400. The boundary condition and the external force
are calculated from the stationary Navier-Stokes equations.

We have divided €2 into a union of uniform N x N x 2 triangular elements, where
N =4, 8, 16 or 32. We have computed in two domain-decomposed ways, where
the number of subdomains in each direction is 2 or 4. Figure 3 shows the domain-
decomposition and the triangulation in the case N = 32 and 4 x 4 subdomains.
Starting from an initial condition for the velocity, the numerical solution is expected
to converge to the stationary solution in time-marching. If maxy ; [uf} —u}j;l |/ At <
107? is satisfied, we judge that the numerical solution has converged and stop the
computation. Computation parameters are set as At = 0.24/N, a = 2.0 and
ecq = 10720 (a is the stabilizing parameter of the upwind approximation).

Figure 4 shows relative errors between the numerical solutions (uy, pn, Ap) and
the exact solution (u,p, ). They are defined by

= vy Nn = ol /oy maxmax s = A /

1/2
2 }
L2 () :

(We normalize the error of the Lagrange multiplier with maxq p, since this quantity
is independent of K and the pressure is a dominant term in the stress vector.
| “|(H1 ()2 denotes the H ! semi-norm.) Results of the non-domain-decomposition
case are also plotted in the figure. We can observe that the errors of the velocity
and the pressure realize the optimal convergence rate of the iso-P2 P1/P1 elements,
that is O(h), regardless of choice of W,, 5. In the first case (iso-P2 P1 element for
Win.n), the error of the Lagrange multiplier does not converge to 0 when h tends
to 0. It may indicate the appearance of some spurious Lagrange multiplier modes,
since the degree of freedom of the Lagrange multiplier is larger than that of jump of

where

K 1/2 K
vlv, = {Z|U]?Hl(§zk))2} Ml = {ZHQ
k=1

k=1
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FIGURE 4. Relative errors in the test problem, uy(left), p,(center)
and A (right)

the velocity in the choice. In the latter two cases the convergence of the Lagrange
multiplier has also observed. The third case (P1 element for W, ) shows the best
property with respect to the convergence of the Lagrange multiplier.

Since the conventional P1 element has the smallest degree of freedom of the
Lagrange multiplier, it can decrease the amount of computation steps in a iteration
time in the CG solver. Hence we adopt iso-P2 P1(u)/P1(p)/P1()) element in the
following.

3.2. Cavity flow problem. We next computed the two-dimensional lid-driv-
en cavity flow problem. The domain Q = (0,1) x (0,1) is divided into a uniform
N x N x 2 triangular subdivision, where N = 24, 48 or 112. The Reynolds number
is 400(when N = 24, 48) or 1000(N = 112). We chose At = 0.01{N = 24),
0.004(N = 48) or 0.001(N = 112), o = 2 and ccg = 10716, We computed
in several domain-decomposition cases among 1 x 1,...,8 x 6,8 x 7 (The case
N =112 and 2 x 2 domain-decomposition was almost full of the memory capacity
in the computer we used!, in this case each subdomain had 6272 elements).

Figure 5(left) shows computation times per a time step (the average of the
first 100 time steps). We see that the computation time becomes shorter as the
number of subdomains (i.e. processors) increases, except for the non-domain-
decomposition case, in which case the performance is almost same with the 2 x 2
domain-decomposition case. The velocity vectors and the pressure contours of the
computed stationary flow in 4 x 4 subdomains are shown in Figure 6. We can
observe that the flow is captured well in the domain decomposition algorithm.

REMARK 4. Since the number of elements in a subdomain is proportional to
K~!, the amount of computation per a CG iteration time is in proportion to
K='5 ~ K~! (the former is due to the pressure Poisson equation solver). We
have observed that the numbers of CG iteration times per a time step are about
O(K"3%) when K is large (Figure 5(right)). Thus the amount of computation in a

!Intel Paragon XP/S in INSAM, Hiroshima University. 56 processors, 16MB memory/proc.
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FIGURE 5. Domain-decomposition vs. computation time(left) and
the number of CG iteration times(right) per a time step
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FIGURE 6. Velocity vectors and pressure contour lines of the lid-
driven cavity flow problem, Re = 400, on a uniform 24 x 24 x 2
triangular subdivision and a 4 x 4 domain-decomposition

time step is estimated to be proportional to K115 ~ K=0-65 Obtained speed up,
about O(K ~%7) in the case of N = 112, agrees with the estimation.

4. Conclusion

We have considered a domain decomposition algorithm of the finite element
scheme for the Navier-Stokes equations. In the scheme, subdomain-wise finite ele-
ment spaces by iso-P2 P1/P1 elements are constructed and weak continuity of the
velocity between subdomains are treated by a Lagrange multiplier method. This
domain decomposition algorithm has advantages such as: (i) each subdomain-wise
problem is a consistent discretized pressure Poisson equation so that it is regular,
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(ii) the size of a system of linear equations to be solved by the CG method is
smaller than that of the original consistent discretized pressure Poisson equation.
For the discretization of the Lagrange multiplier, we compared three cases: the
conventional iso-P2 P1 element, a modified iso-P2 P1 element having no freedoms
at both edges of interfaces, and the conventional P1 element. In every case, we
checked numerically in a sample problem that the scheme could produce solutions
which converged to the exact solution at the optimal rates for the velocity and
the pressure. In the latter two cases we have also observed the convergence of the
Lagrange multiplier. Employing the conventional P1 element, we have computed
the lid-driven cavity flow problem. The computation time becomes shorter when
the number of processor increases.
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