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1. Introduction

The main goal of this article, which generalizes [4] considerably, is to discuss the
numerical simulation of particulate flow for mixtures of incompressible viscous fluids
and rigid particles. Such flow occurs in liquid/solid fluidized beds, sedimentation,
and other applications in Science and Engineering. Assuming that the number of
particles is sufficiently large, those simulations are useful to adjust parameters in
the homogenized models approximating the above two-phase flow.

From a computational point of view, the methodology to be discussed in this
article combines distributed Lagrange multipliers based fictitious domain methods,
which allow the use of fized structured finite element grids for the fluid flow com-
putations, with time discretizations by operator splitting a la Marchuk-Yanenko to
decouple the various computational difficulties associated to the simulation; these
difficulties include collisions between particles, which are treated by penalty type
methods. After validating the numerical methodology discussed here by compar-
ison with some well documented two particle - fluid flow interactions, we shall
present the results of two and three dimensional particulate flow simulations, with
the number of particles in the range 10 — 10?; these results include the simulation
of a Rayleigh-Taylor instability occurring when a sufficiently large number of parti-
cles, initially at rest, are positioned regularly over a fluid of smaller density, in the
presence of gravity.

The methods described in this article will be discussed with more details (of
computational and physical natures) in [6]. Actually, ref. [6] will contain, also,
many references to the work of several investigators, showing that the most pop-
ular methodology to simulate particulate flow has been so far the one based on
ALE (Arbitrary Lagrange-Euler) techniques; these methods are clearly more com-
plicated to implement than those described in this article (particularly on parallel
platforms).
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122 ROLAND GLOWINSKI ET AL.

FIGURE 1. The rigid body B and the flow region Q\B

2. A model problem

For simplicity, we shall consider first the motion of a unique rigid body B,
surrounded by a Newtonian incompressible viscous fluid. From a geometrical point
of view, the situation is the one depicted in Figure 1.

The rigid body B(t)(= B) is contained in a region Q C IR%(d = 2,3, in prac-
tice). The fluid flow is modelled by the following Navier-Stokes equations (with
obvious and/or classical notation):

(1) pr |+ 0 9] = pre 4 90 in 205,
(2) V-u=0in Q\B(t),

(3) u(z,0) = ug(z),z € M\ B(0), with V -uy = 0,
(4) u=goonl.

We remind that for Newtonian fluids the stress tensor o is defined by
(5) o = —pl+vi(Vu+ Vu').

Assuming that a no-slip condition holds on 0B(t), the rigid body motion of B(t),
combined with the incompressibility condition (2), implies that [.go - ndl' = 0.

For further simplicity, we shall assume that Q C IR?, but there is no basic
difficulty to generalize the following considerations to three-dimensional particulate
flow. Denoting by V (resp., w) the velocity of the center of mass G (resp., the
angular velocity) of the rigid body B, we have for the motion of B the following
Newton’s equations:

(6) MV =F + Mg,

(7) Io=T,

(8) G=V,

with the force F and torque T, resulting from the fluid-particle interaction, given
by

(9) F = [,; ondy,

(10) T = [,,(Gz xon) - egdy,
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FICTITIOUS DOMAIN METHOD FOR PARTICULATE FLOW 123

where, in (10), e3 = {0,0, 1} if we assume that 2 is contained in the plane z,0x;.
The no-slip boundary condition mentioned above implies that on 0B we have

(11) u(z,t) = V(t) + w(t)x Gz, ¥z € dB(1),
with w = {0,0,w}. Of course, I is the moment of inertia of B, with respect to G.
3. A global variational formulation
We introduce first the following functional spaces
Vy = {vlve H'(Q\B(t))*, v =go(t) on T},
Vo(t) = {vlve HY{(Q\B(t))?, v=00onT,v=Y +6x Gr
on OB,Y € IR?, 0 € IR},

{dlqg € L2(Q\§(t—))»/ .

V10

L{(Q\B(t)) qdz = 0}

with 8 = {0,0,6}. By application of the virtual power principle (ref. [7]) we are
led to look for:

u(t) € Vo), p € L§(Q\B(1)), V(t) € R?*,w(t) € R such that

pf/ 8—u~vd:1:-|-pf/ (u~V)u-vd:c—/ pV - vdz
o\B{y Ot OB O\B{)

(12) {+2v D(u): D(v)dz + M(V —g)- Y + Iwf

= ,Of/ _g-vdx, Vv eVy(t), WY,0} € IR3,
QB

(13) / _ qV-u(t)dz =0, Vg € L*(N\B(1)),
Q\B(t)

(14) u=gyonT,

(15) u=V+wx Gz on B(t),

(16) u(zg) = uo(x), Vo € Q\B(0), with V -uy =0,

17) V(0) = Vy, w(0) = wp.

In (12), dz = dx1dxs, and the rate-of-strain tensor D(v) is given by
1

(18) D(v) = 5(Vv+ Vv,

and we have, for G(t)(= G) in (15),

(19) G(t) =Go+ /tV(s)ds.
0

4. A fictitious domain formulation

The fictitious domain method discussed below, offers an alternative to the ALE
methods investigated in [9], [14], [13]. The basic idea is quite simple and can be
summarized as follows:

(i) Fill each particle with the surrounding fluid.
(ii) Impose a rigid body motion to the fluid inside each particle.
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124 ROLAND GLOWINSKI ET AL.

(iii) Relaz the rigid body motion inside each particle by using a distributed La-
grange multiplier defined over the space region occupied by the particles.

In the following, we shall assume that B is made of an homogeneous material of
density ps. Starting from the global variational formulation (12)-(17) and following
steps (i) to (iii) leads to the following generalized variational problem, where A(t)
is the distributed Lagrange multiplier forcing at time t rigid body motion for the
fluid " filling” body B:

Find U(t) € Wy, ) = {vlv € H'(Q)?, v =go(t) on T},

P(t) € L3(9) = {dlg € I2(9), / iz =0},
A(t) € A(t) = L*(B(t))? orA(t) = H(B(t))?, so that

(pf/a—u'vdm-{-pf/(U-V)U-vd:c—/PV-vd:c
o Ot Q Q

+20; [ D(U) s Dw)ds + (1= py/p) MV~ )Y

(20)

+(1 = pp/ps)Iif— < XA, v—=Y —O0x Gr>py= pf/g -vdz,

Q

Vv € H (D)%, V{Y,0} € R®,

(21) /qV -Udr =0, Vg € L*(),
Q

(22) <,u,U—V—w><G7x >pwy=0, Y € A(t),
(23) U=gyonT,
(24) U(z,0) = Uy(z),z € Q, with V-Uy =0 and U0|Q\W = uy,
(25) V(O) = V(), w(O) = wo,G(O) = G().

If (20)-(25) hold, it can be easily shown that U(t)|Q\W =u(t), P(t)lﬂ\m = p(t),
where {u(t),p(t)} completed by {V(t),w(t)} is a solution of the global variational
problem (12)-(17). The above formulation deserves several remarks; we shall limit
ourselves to

REMARK 1. From a mathematical point of view, the good choice for A(t) is
H'(B(t))? with < -, >p(;) defined by either

(26) <M,V >ppy= / (u-v+d*Vp: Vv)dz,
B(t)
or
(27) <> [ (v D) D)
B(t

where, in (26) and (27), d° is a scaling factor, with d a characteristic length, an
obvious choice for d being the diameter of B. An obvious advantage of < -, >p)
defined by (27) is that the differential part of it vanishes if v is a rigid body motion
velocity field.

The choice A(t) = L?(B(t))? is not suitable for the continuous problem, since,
in general, u and P do not have enough regularity for X to be in L?(B(t))?. On
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FICTITIOUS DOMAIN METHOD FOR PARTICULATE FLOW 125

FIGURE 2. Refinement of a triangle of 7.} (left) and a triangula-
tion of a disk (right).

the other hand, < -,- >p(;) defined by

(28) < W1,V >p1)= /u-vdac
Q

makes sense for the finite dimensional approzimations of problem (20)-(25), in order
to force rigid body motion inside B.

REMARK 2. In the case of Dirichlet boundary conditions on I', and taking the
incompressibility condition V - U = 0 into account, we can easily show that

(29) 21/f/D(U) : D(v)dx = Uf/VU : Vvdz, Vv e Wy,

Q 0
which, from a computational point of view, leads to a substantial simplification in
(20)-(25).

REMARK 3. The distributed Lagrange multiplier approach can be applied to
the cases where the particles have different densities and/or shapes. We are cur-
rently investigating the extension of this approach to visco-elastic fluid flow.

REMARK 4. The distributed Lagrange multiplier approach discussed here takes
full advantage of the particle rigidity. For deformable particles, we can not apply
the above method, directly at least.

Further remarks and comments can be found in [6].

5. Finite element approximation of problem (20)-(25)

5.1. Generalities. Concerning the space approzimation of problem (20)-(25)
the main computational issues are:

(i) The approximation of U and P which are functions defined over 2.
(if) The approximation of the multiplier A, which is defined over the moving
domain B(t).
(iii) The approximation of the bilinear functional
{N,V} —< M,V >B(t) .

The most delicate issue is (4ii).
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5.2. On the pressure and velocity spaces. In the following, we shall de-
note by h the pair {hq, hp}, where hq and hp are space discretization steps associ-
ated to finite element approzimations defined over Q and B, respectively. Assuming
that Q(C RQ) is polygonal (as in Figure 1), we introduce a finite element trian-
gulation T} of 0, so that Urerp T = Q, and then a twice finer triangulation 7,
obtained by joining the mid-points of the edges of the triangles of 7,7, as shown in
Figure 2, above.

The pressure spaces L?(f2) and L3(Q) are approximated by

(30) Ly = {anlan € C°(Q), aulr € P1, VT € T;}},
Q

respectively, with P; the space of the polynomials of two variables of degree < 1.
Similarly, we approximate the velocity spaces W,, and Wy(= H}(Q)?) by

(32) Woor = {vi|vh € CO(Q)?, vi|r € Pf, VT € T, Vilr = gon},
(33) Won = {valvi € C°(Q)?, vilr € P}, VT € T, vp|r = 0},

respectively; in (32), gox is an approximation of gg so that [, gos - ndl’ = 0.

The above pressure and velocity finite element spaces - and their 3-D gener-
alizations - are classical ones, concerning the approximation of the Navier-Stokes
equations for incompressible viscous fluids (see, e.g., [3] and the references therein
for details.)

5.3. Approximation of the multiplier space A(t). At time ¢, we approx-
imate the multiplier space A(t) by

(34) An() = {paliy € COBu(t)*, pylr € PL, VT € T},

where, in (34), B(t) is a polygonal approximation of B(t) and 7;LB(t) is a trian-
gulation of By(t). If B(t) is a disk, we take advantage of its rotation-invariance
by taking for ThB(t) the triangulation obtained by translating ThB(O) by the vector
GOG(ti(ThB(O) can be viewed as a triangulation of reference); such a triangulation
ThB(t) is shown in Figure 2.

If B(t) is not a disk, we shall take for ThB(t) a triangulation rigidly attached to
B(t).

5.4. Approximation of the bilinear functional < :,- >p). Compat-
ibility conditions between hq and hp. Suppose that the bilinear functional
< +,» >p(y) is defined by

<,V >pp)= / (ap - v + bV : Vv)dz,
B(t)
with a > 0 and b > 0. In order to avoid solving complicated mesh intersection prob-
lems between 7,** and %B(t) we approximate < -,- >p( (and, in fact <-,- >p, (1))

by

(35) (s v} — / lagsn - (Thvi) + bV = V(v

B (t)
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FICTITIOUS DOMAIN METHOD FOR PARTICULATE FLOW 127

where, in (35), 7, is the piecewise linear interpolation operator which to v, asso-
ciates the unique element of Aj(t) obtained by interpolating linearly v, on the
triangles of ThB(t), from the values it takes at the vertices of the above triangulation.

As can be expected with mixed variational formulations, some compatibility
conditions have to be satisfied between the spaces used to approximate {U, P} and
A (see, e.g., [2], [15] for generalities on the approximation of mixed variational
problems and several applications). Concerning the particular problem discussed
here, namely (20)-(25), let us say that:

(i) condition hg << hg is good to force accurately rigid body motion on B(t).
(il) condition hq << hp is good for stability.
Our numerical experiments show that hq ~ hp seems to be the right compro-
mise.

REMARK 5. We can also use collocation methods to force rigid body motion

on B(t). This approach (inspired from [1]) has been tested and the corresponding
results are reported in [6].

5.5. Finite Element approximation of problem (20)-(25). It follows
from previous Sections that a quite natural finite element approximation for the
mixed variational problem (20)-(25) is the one defined by

Find {Up, Py} € Wy, (1) x L3(), {V(t),w(t)} € R3, Ap(t) € Ax(t) so that

Uy,
pf/ ! -vdac-l-pf/(Uh-V)Uh'vd:v—/PhVNdx
o Ot Q0 Q

+Vf/VU;,, :Vvde + (1 —pp/ps)M— Y + (1 — pf/ps)I%G
Q

(36) dt
= < Ap, v =Y = Ox Gx>p, ()= pf/g - vdzx
Q
+(1 = pp/ps)Mg-Y, Vv € Wy, V{Y,0} € R3, a.e., t >0,
(37) /qV Updz =0, Vg € L},
Q
(38) < p, mpUp =V —wx 5$>B’,(t): 0, Y € Ap(t),

(39) U(0) = Ugn(Ugp, ~ Uy), with /qV ‘Ugpdz =0, Vg € L2,
Q

(40) V(0) = Vg, w(0) = wy, G(0) = Go,

with G(t) = Go + [, V(s)ds.

6. Time discretization by operator-splitting

6.1. Generalities. Most modern Navier-Stokes solvers are based on Operator-
Splitting schemes, in order to force V-u = 0 via a Stokes solver (like in, e.g., [3]) or
a L?-projection method, (like in, e.g., [16]). This approach applies also to the par-
ticulate flow problems discussed here. Indeed, these problems contain three basic
computational difficulties, namely:

(i) The incompressibility condition V-U = 0 and the related unknown pressure
P.
(ii) Advection and diffusion operators.
(ili) The rigid body motion of B(t) and the related Lagrange multiplier X(t).
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128 ROLAND GLOWINSKI ET AL.

To each of the above difficulties is associated a specific operator; the operators
associated to (i) and (iii) are essentially projection operators. From an abstract
point of view, the problems to be solved (continuous or discrete) have the following
structure:

d
(41) d—f +A1(Lp,t)+A2(‘Pat)+A3(90at) = f,

©(0) = wo.

To solve (41) we suggest a fractional-step a la Marchuk-Yanenko (see [11] and the
references therein); these schemes are first order accurate only, but very stable
and easy to implement; actually they can be made second order accurate by sym-
metrization. Applying the Marchuk-Yanenko scheme to the initial value problem,
we obtain (with At(> 0) a time discretization step):

(42) ¢’ = po,

and for n > 0, we compute "1 from " via

n+;5/3 n+(j—1)/3

4
At

(43) - + A" (1A = £

for j=1,2,3, with 3",_, i+ = .

6.2. Application of the Marchuk-Yanenko scheme to particulate flow.
With o, 8sothat a +8 =1, 0 < a,83 < 1, we time-discretize (36)-(40) as follows
(the notation is self-explanatory):

(44) U° = Uy, VO, W0, G are given;
for m >0, assuming that U™, V™ w™ G™ are known, solve

Un+l/3 —_yr
L=

qV - Un13dg = 0, Vg € L3; {UMH/3 Prrl/3y e Wil x L2,
Q

-vdz — /P"““V -vdx =0, Vv € Wy,
(45) Q

Next, compute Unt2/3 Yn+2/3 Gnt2/3 wiq the solution of

Un+2/3 _ Un+1/3
pf/& At

-vdr + auf/ VU3 . Vvdz+
Q

(46) pf/(Un-H/ii . v)Un+2/3 .vdr = Pf/g -vdz,
Q Q
Vv € Wop; U3 e Wit
and
(47) VI =V 4 gL, G = G (VT 4 V)AL,
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Finally, compute UMt X1 vt yntl Gntl wig the solution of

n+l _ yin+2/3
pf/ —U———A~:-J—— -vdr + Bl/f/ VU™t Vvdz+
Q

Q
n+l _  n AVALS 2 Vn+2/3
(1=ps/ps) [IE— 0+ M—————— Y =
At At
(48) . — .
<A MV =Y =0 x G 3x > ey, Vv € Won, {Y, 0} € R?,
n+1 n+1 n+2/3 _ n+2/3
< p, UM -V —w x G T >pni23=0, YV € Ay, ,
h
(UMt e Wt amH e AP Vil e R? whtl e R,
and
(49) Gl = Gn + (V™ + VAt /2.

Solving problem (45) is equivalent to computing the L?()-projection of U™
on the space Wg’;‘,‘:l. This can be done easily using an Uzawa/conjugate gradient
algorithm, preconditioned by the discrete analogue of —V? for the homogeneous
Neumann boundary condition; such an algorithm is described in [16]. Problem
(46) is a discrete advection-diffusion problem; it can be solved by the methods
discussed in [3].

Finally, problem (48) has the following - classical - saddle-point structure

Az +By=1b
Btz =,

with A a symmetric and positive definite matriz. Problem (48) can also be solved
by an Uzawa/conjugate gradient algorithm; such an algorithm is described in [4]
and [6].

7. Remarks on the computational treatment of particle collisions

In the above sections, we have consider the particular case of a single particle
moving in a region (2 filled with a Newtonian incompressible viscous fluid; we have
implicitly discarded possible boundary/particle collisions. The above methodology
can be generalized fairly easily to many particles cases, with, however, a computa-
tional difficulty: one has to prevent particle interpenetration or particle/boundary
penetration. To achieve those goals we have included in the Newton’s equations
(6)-(8) modeling particle motions a short range repulsing force. If we consider the
particular case of circular particles (in 2-D) or spherical particles in (3-D), and if
P; and P; are such two particles, with radiuses R; and R; and centers of mass G;

and G, we shall require the repulsion force F;; between P; and P; to satisfy the
following properties:

(i) To be parallel to G;G,.
(ii) To verify

| Fij | =04f dij > Ri + R; + p,
| Fij ] =C/E if di]‘ = R1+R]‘,
with dij = |GG, ¢ a scaling factor and € a "small” positive number.
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IF..|
1

f f

Ri+R;  Rj+Ri+p dij

FIGURE 3. Repulsion force behavior

(iii) | Eij | has to behave as in Figure 3 for
Ri+Rj Sdij SRi—FRj-}-p.

Parameter p is the range of the repulsion force; for the simulations discussed in the
following Section we have taken p ~ hg,.
Boundary /particle collisions can be treated in a similar way (see [6] for details).

REMARK 6. The above collision model is fairly simple and is inspired from
penalty techniques classically used for the computational treatment of some contact
problems in Mechanics (see, e.g., [10], [5] for details and applications). Despite its
simplicity, this model produces good results, the main reason for that being, in our
opinion, that if the fluid is sufficiently viscous and if the fluid and particle densities
are close, the collisions - if they occur - are non violent ones, implying that the
particles which are going to collide move at almost the same velocity just before
collision. For more sophisticated models allowing more violent collisions see, e.g.,
[12] and the references therein.

8. Numerical experiments

8.1. 2 particles case. In order to validate the methodology described in the
previous sections, we are going to consider a well-documented case, namely the
simulation of the motion of 2 circular particles sedimenting in a two-dimensional
channel. We shall apply algorithm (44)-(49) with different mesh sizes and time
steps. The computational domain is a finite portion of a channel, which is moving
along with the particles. Its x and y dimensions are 2 and 5, respectively. The
diameter d of the particles is 0.25. The fluid and particle densities are py = 1.0 and
ps = 1.01, respectively, and the fluid viscosity is vy = 0.01. The initial positions
of the two circular particles are at the centerline of the channel with distance 0.5
apart. Initial velocity and angular speed of particles are zero. We suppose that at
t = 0 the flow is at rest.

For numerical simulations, we have chosen two time steps, At = 0.0005 and
0.00025, and two mesh sizes for the velocity field, h, = 1/192 and 1/256. The mesh
size for pressure is always h, = 2h,. The force range, p, in which the short range
repulsion force is active is 1.5h,. For the (stiffness) parameter, €, mentioned in
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FIGURE 4. Particle position at t = 0.15, 0.2, 0.3 (from left to right).

previous Section, we have taken ¢, = 10~° for particle-particle repulsion force and
€w = €p/2 for particle-wall repulsion force.

In Figure 4, we can see the fundamental features of two fluidizing particles, i.e.,
drafting, kissing and tumbling obtained with mesh size h, = 1/256 and time step
At = 0.0005. In Figures 5-7, the center of the particles, translation velocity of the
center of the particles, and the angular speed of the particles are shown for the cases
where the time step is the same, At = 0.0005, and the mesh sizes are h, = 1/192
and 1/256. The maximal Reynolds numbers in the numerical simulations is about
450. The time at which the two particles are the closest is t = 0.1665 in the
above two cases. Actually we have a very good agreement between these two
simulations until kissing. After kissing, despite the stability breaking which is
clearly the manifestation of some instability phenomenon, the simulated particle
motions are still very close taking into consideration the difficulty of the problem.

Also in Figures 8-10, similar history graphs are shown which are obtained
from the same mesh size, h, = 1/192, and two time steps, At = 0.0005 and
0.00025. When the time step is At = 0.00025, the maximal Reynolds number
in the numerical simulation is about 465 and the time of the smallest distance
occurrence is at ¢ = 0.17125. We can also find a very good agreement between
these two cases until the kissing occurrence.

These results compare qualitatively well with those of Hu, Joseph, and Cro-
chet in [8], which were obtained with different physical parameters and a different
numerical methodology.
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132 ROLAND GLOWINSKI ET AL.

FIGURE 5. History of the z-coordinate (left) and the y-coordinate
(right) of the centers of 2 circular particles obtained from different
mesh sizes, h,, = 1/192 (thick lines) and h, = 1/256 (thin lines).

0

FIGURE 6. History of the z-component (left) and the y-component
(right) of the translation velocity of 2 circular particles obtained
from different mesh sizes, h, = 1/192 (thick lines) and h, = 1/256
(thin lines).

FIGURE 7. History of the angular speed of 2 circular particles ob-
tained from different mesh sizes, h, = 1/192 (thick lines) and
h, = 1/256 (thin lines).
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FiGuRE 8. History of the z-coordinate (left) and the y-coordinate
(right) of the centers of 2 circular particles obtained from different
time steps, At = 0.0005 (thick lines) and At = 0.00025 (thin lines).

-10

FIGURE 9. History of the z-component (left) and the y-component
of the (right) translation velocity of 2 circular particles obtained
from different time steps, At = 0.0005 (thick lines) and At =

0.00025 (thin lines).

FIGURE 10. History of the angular speed of 2 circular particles
obtained from different time steps, At = 0.0005 (thick lines) and

At = 0.00025 (thin lines).
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FIGURE 11. Sedimentation of 1008 circular particles: ¢t = 0, 1, and
2 (left to right).
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FIGURE 12. Sedimentation of 1008 circular particles: ¢t = 3, 4, and
5 (left to right).

8.2. A 1008 particles case. The second test problem that we consider con-
cerns the simulation of the motion of 1008 sedimenting cylinders in the closed chan-
nel, 2 = (0,2) x (0,4). The diameter d of the cylinders is 0.0625 and the position
of the cylinders at time t = 0 is shown in Figure 11. The solid fraction in this test
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FIGURE 13. Sedimentation of 1008 circular particles: ¢t = 10, 20,
and 48 (left to right).

case is 38.66%. Initial velocity and angular speed of cylinders are V,ffi =0, wgyi =0
fori=1,...,1008. The density of the fluid is py = 1.0 and the density of cylinders
is ps = 1.01. The viscosity of the fluid is v; = 0.01. The initial condition for the
fluid flow is u = 0 and gy(t) = 0,Vt > 0. The time step is At = 0.001. The mesh
size for the velocity field is h, = 1/256 (there are 525835 nodes). The mesh size for
pressure is h, = 1/128 (131841 nodes). For this many particles case, a fine mesh is
required. The parameters for the repulsion force are p = h,, €, = 3.26 x 107°, and
€w = €,/2. We have chosen a = 1 and 8 = 0 in the Marchuk-Yanenko scheme. The
number of iterations for the divergence free projection problem varies from 12 to
14, the number of iterations for the linearized advection-diffusion problem is 5, and
the one for the rigid body motion projection is about 7. Those number of iterations
are almost independent of the mesh size and of the number of particles. With the
finite dimensional spaces defined in Section 5, the evolution of the 1008 cylinders
sedimenting in the closed channel is shown in Figures 11-13. The maximal particle
Reynolds number in the entire evolution is 17.44. The slightly wavy shape of the
interface observed at t=1 in Figure 11 is a typical onset of a Rayleigh-Taylor insta-
bility. When ¢ is between 1 and 2, two small eddies are forming close to the left wall
and the right wall and some particles are pulling down fast by these two eddies.
Then other two stronger eddies are forming at the lower center of the channel for
t between 2 and 4; they push some particles almost to the top wall of the channel.
At the end all particles are settled at the bottom of the channel.

8.3. A three dimensional case. The third test problem that we consider
here concerns the simulation of the motion of two sedimenting balls in a rectangular
cylinder. The initial computational domain is 2 = (0,1) x (0,1) x (=1, 1.5), then it
moves with the center of the lower ball. The diameter d of two balls is 0.25 and the
position of balls at time ¢ = 0 is shown in Figure 14. Initial velocity and angular
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<>

FIGURE 14. Sedimentation of two spherical particles: ¢t = 0.00,
0.35, and 0.40 (left to right)

T >

Co

FIGURE 15. Sedimentation of two spherical particles: t = 0.50,
and 0.70 (left to right)

speed of balls are zero. The density of the fluid is py = 1.0 and the density of balls
is ps = 1.14. The viscosity of the fluid is vf = 0.01. The initial condition for the
fluid flow is u = 0 The mesh size for the velocity field is h, = 1/40. The mesh size
for pressure is h, = 1/20. The time step is At = 0.001. For the repulsion force
parameters, we have now taken, p = h,, €, = 8.73 x 1073 and €, = €,/2. The
maximal particle Reynolds number in the entire evolution is 198.8. In Figures 14
and 15, we can see the fundamental features of fluidizing two balls, i.e., drafting,
kissing and tumbling.
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