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1. Introduction

In this paper, we report some preliminary studies of a finite difference method
on overlapping nonmatching grids for a two-dimensional Poisson problem. The
method can be regarded as an extension of the Generalised Additive Schwarz
Method (GASM). GASM was originally developed as a preconditioning technique
that uses special transmission boundary conditions at the subdomain interfaces. By
involving a nonmatching grids interpolation operator in the subdomain boundary
conditions, we show that the method can also be used as a discretisation scheme.
We focus only on the error issues.

2. Generalised Additive Schwarz Method

We first recall briefly the GASM. Suppose we wish to solve Au = f where A
represents the discretisation of a PDE defined on a domain which is partitioned
into nonoverlapping subdomains. Let R;: 2 — €; denote the linear restriction
operator that maps onto subdomain ¢ by selecting the components corresponding
to this subdomain. The matrix M; = R;AR! denotes the principal submatrix of
the matrix A associated with subdomain §2;. The result of applying the GASM can
be written as a sum of the solutions of independent subdomain problems, which
can be solved in parallel: M~! =3""  RIM 'R,

We describe this GASM for the case of two subdomains separated by the in-
terface I'. A more detailed description has been given by Tan [12] and Goossens et
al. [2]. At the heart of the GASM lies an extension of the subdomains to slightly
overlapping grids. With a proper definition of the overlap, the restrictions R; can
be defined in such a way that the original discretisation is distributed across the
subdomain operators M;. Figure 1 illustrates the extension process. In case the
classical five-point star stencil is used, an overlap of one mesh width is sufficient.
After extension towards overlap, and thus duplication of €; and €2, into §2; and
respectively, we obtain an enhanced system of equations Au = f in which we still
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FIGURE 1. Extension of the subdomains to slightly overlapping grids.

have to specify the relation between the overlapping unknowns. The obvious way
is just to state that the values in the duplicated subdomains (2; and €27 should be
copied from the values in the original subdomains §2; and {2, respectively. This is
known as the Dirichlet-Dirichlet coupling.

Tang [15] has shown that fast convergence can be obtained by choosing a
good splitting, instead of increasing the overlap when a Schwarz enhanced matrix
is used. Tan [12] has shown that the spectral properties of the preconditioned
operator AM ! and thus the convergence properties of a Krylov subspace method
preconditioned by a GASM, are improved by pre-multiplying the enhanced linear
system Au = f with a properly chosen nonsingular matrix P. This has been
exploited by Goossens et al. [2] to accelerate the solution of the Shallow Water
Equations.

This pre-multiplication with P boils down to imposing more general conditions
at the subdomain interfaces. This approach has originally been introduced by
Lions [5] and subsequently been used by several authors. Hagstrom et. al. (3]
advocate the use of nonlocal transmission conditions. Tan and Borsboom [13]
have applied the Generalised Schwarz Coupling to advection-dominated problems.
Nataf and Rogier [8, 9] have shown that the rate of convergence of the Schwarz
algorithm is significantly higher when operators arising from the factorisation of the
convection-diffusion operator are used as transmission conditions. Based on these
results, Japhet [4] has developed the so-called optimised order 2 (002) conditions
which result in even faster convergence.

The submatrices C,., Cy;, C,r and C,; represent the discretisation of the trans-
mission conditions and can be chosen freely subject to the condition that the ma-

. _{ C» =Cy
trix C'={ c. Cu

Additive Schwarz Preconditioners which are thus based on the enhanced system of
equations Au = f:

) remains nonsingular. This gives rise to the Generalised
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The GASM differs from the classical Additive Schwarz Preconditioner intro-
duced by Dryja and Widlund [1] in that the transmission conditions at the inter-
faces, i.e. the boundary conditions for the subdomain problems, can be changed in
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FIGURE 2. Stencil for interpolation and nonmatching grid.

order to improve the spectral properties of the preconditioned operator. An excel-
lent description of the classical Additive Schwarz Preconditioner is given by Smith
et al. [10].

3. Nonmatching Grids

The main topic addressed in this paper is a technique aiming at expanding the
applicability of this GASM to nonmatching grids. Tan and Borsboom [14] have
already shown how to apply the GASM on patched subgrids. The domain they
are using, consists of a set of naturally ordered parallelograms, all of which have
the same mesh width tangent to the interface. The mesh widths normal to the
interface can be different on opposite sides of the interface. We want to alleviate
this restriction and present a technique which also allows the GASM to be used
when the mesh widths tangent to the interface are different on the opposite sides
of the interface. The fact that nonmatching grids are being used implies that
interpolation is necessary to transfer information from one grid to the other grid.

3.1. Consistence of grid interpolations. The following definition encap-
sulates an important concept in the nonmatching grids case.

DEFINITION 1 (Consistent Interpolation). Let I4, .5, be the interpolation op-
erator from §2; to ; with mesh parameters h; and h;. Suppose D is the differential
operator to be approximated by a finite difference operator D;(Ln,, In, —n,), which
depends on the usual finite difference operator Ly, and on I, .p,. We claim that
the interpolation operator Iy, .5, is consistent on €2; if

(2) (D — Di (th,lhjﬁhl)) u(:v) = O(hz)
for all x € Q,, the part of §2; that is overlapped.

The rest of this section is devoted to consistency. Bilinear interpolation is not
sufficient for the interpolation operator I, .5,. Figure 2 shows the stencil. The
value of vy is given by v; = (1 — a@)(1 — B)u; + a(l — Buz + (1 — a)Buz + afug
where o = (mm - xul)/(xu2 - xul) and ﬁ = (yv1 - yux)/(yu:s - yul)' If in the
discretisation of —V2u in ;, the point in € does not match with a point in 2,
and its value is computed by bilinear interpolation from points in €2, and €23, then
this discretisation is not consistent. Hence higher order interpolation is required.

In [11], a fourth order interpolation formula was constructed with a small
interpolation constant for smooth functions satisfying an elliptic equation of the
form —(Aug), — (Buy)y + au = f, where A,B > 0 and a > 0. This interpolation
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formula uses a 4 by 4 stencil. Consequently, the GASM constructed with this
interpolation formula requires an extension of at least two grid lines.

Instead of using bilinear interpolation to compute vy from wuy, ug, us and wug,
which may result in an inconsistent discretisation, we discretise the partial differen-
tial equation on the stencil formed by u;, ug, us, u4 and v1. We seek the coefficients

Yos Y15 Y25 V3 and Y4 in

L(a, ) = 70u(0,0) + mu((l = a)h, (1 = B)h) + v2u (—ah, (1 - B)h)
3) +  ysu(—ah,—ph) +ysu((1 - a)h, —Gh)

so that a consistent approximation to (ugzz + uyy)h%/2 at v; = u(0,0) is obtained.
This can be done using the Taylor expansion for u(z,y) about the origin: u(z,y) =
Ut Up T + Uy Y+ Upr T2 2+ Uy TY + Uy y? /24 O(h?). We assume |z| < h and |y| < h
so that the remainder term can be bounded by Ch®. The requirements that the
coefficients of u, u, u, and wu,, vanish together with the requirements that the
coefficients of u,;h?/2 and u,,h?/2 equal 1 in the Taylor expansion of (3), yield an
overdetermined system Cg = c:

1 1 1 1 1 0
0 (1-8 1-8 -8 -8 I 0
(4) 0 (1-a) —a —a (1-0a) m | o
0 (1 _ ﬂ)z (1 _ 6)2 ﬂZ ﬂ2 Y2 = 1
0 (1-a)? o? @ (1-a) i 1
0 (1-a)1-p) -a(l-B8) af -(1-m)f ) \ 7 0

This overdetermined system Cg = c can only have solutions if the determinant of
the enhanced matrix C = (C| ¢) is zero:

(5) det C =det (C |c) = (8- a)(a+3-1).

Hence a solution can only exist when o = § or a+ 3 = 1, i.e. when the point v; lies
on one of the diagonals of the square, formed by u;, ug, us and us. The solution is

6) g=(-2-(1-a)a—a/(l-a) a/l-a) 1 (1-a)/a 1)"
when o = 3 and when o + 3 = 1 it is

M g=(-2-(1-a)a-a/l-a) 1 (1-a)fa 1 a/(l-a))".
The truncation error is determined by substitution of this solution in (3):
(8) L(a, B) = h? (ugy + Uyy) /2 + Coh® (Ugez + yyy) /6 + O(R),

where C,, = 1—2a in case o = f and C, = 2a—1 when a + 3 = 1. Hence an O(h)
approximation to uz, + uy, can be obtained, an O(h?) approximation can only be
obtained when a = 8 =1/2:

9) L(a,B) = h? (Uzz + Uuyy) /2 + h (Uzzze + OUszayy + Uyyyy) /96 + O(hﬁ)-

In summary, a consistent discretisation exists only if v; is in the center or on
one of the diagonals of the square formed by i, u2, uz and u4. The truncation error
is O(h?) when v; is in the center and is O(h) when v, is on one of the diagonals.
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3.2. Error Analysis. Miller [6] has proven the convergence of the Schwarz
algorithm based on a maximum principle. We restrict ourselves here to showing that
second order accuracy in the L., norm is obtained when a consistent interpolation
is used. The convergence of the GASM will be studied elsewhere.

We denote by p = (i, ) an index pair. Jy, is the set of index pairs of grid points
in the domain 2. We make the following assumptions.

L. For all p € Jo: Ly has the form: Lhu, = —cpu, + >, ckur where the

coeflicients are positive and the sum over k is taken over mesh points which
are neighbours of p.

2. Forallpe Jo: ¢y > >, ck.

3. The set Jg is connected. By definition a point is connected to each of its
neighbours occurring in (1) with a nonzero coefficient. By definition a set
is connected if, given any two points p and ¢ in Jg, there is a sequence of
points p = pg, pi, ---, Pm+1 = @, such that each point p; is connected to
pi—1 and p;+q, fori=1,2,... ,m.

4. At least one of the equations must involve a Dirichlet boundary condition.

The maximum principle as given by Morton and Meyers [7] can briefly be stated
as follows.

LEMMA 2 (Maximum Principle [7]). Suppose that Ly, Jo and Jaq satisfy all
the assumptions mentioned above and that a mesh function u, satisfies Lru, > 0
forallp € Jo. Then u, cannot attain a nonnegative mazimum at an interior point:

(10) maxpe j, Up < max {maxge j,,%q, 0} .

THEOREM 3. Suppose a nonnegative mesh function ®, is defined on Jo U Jaq
such that L, ®, > 1 for all p € Jo and that all the assumptions mentioned above

are satisfied. Then the error in the approximation is bounded by
(11) |eP| < maXae J,, Pa maxP‘EJnITP'
where T}, 1s the truncation error.

To prove second order accuracy in the L., norm, we show that the discreti-
sation of V2(—u) = f and the coupling equations satisfy the assumptions (1) and
(2) for the maximum principle. The comparison function is chosen as ®(z,y) =
((z — p)* + (y — v)?) /4, resulting in £,®, = 1 for all p € Jo. The scalars p and v
are chosen to minimise the maximum value of this function ®(z,y) on the boundary
09. The classical five-point discretisation of V2u

(12) Lnty = (i1 + w1 — 4y +uigr g +ui i) B

satisfies the assumptions for the maximum principle. In case (9) is used to obtain
an equation for vy, the assumptions (1) and (2) for the maximum principle are
satisfied since this equation has ¢, = 1/(2h?) and ¢, = 4/(2h?). For problems with
at least one Dirichlet boundary condition, the standard error analysis using the
maximum principle yields second order accuracy in the L. norm. The proof is
essentially the same as the one given by Morton and Meyers [7].

If the point v; is not in the center of the square formed by w1, ug, us and uy,
we have to use (8) to obtain an equation from which v; can be determined. In
this case we still have second order accuracy, but a different comparison function
must be defined in €;. This is analogous to the classical result that second order
accuracy is obtained with a second order discretisation of the partial differential
equation and only first order discretisation of the boundary conditions.
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TABLE 1. Results for u;(z,y) = exp(—z* — ?).

Results for hg = 2h;.
no N1 | Leo in block 0 ratio L in block 1 ratio
6 11 0.00173386 0.00160317
11 21 | 0.000492551 3.52016 0.000439111 3.65094
21 41 | 0.000128595 3.83025 0.000113528 3.86787
41 81 3.28033e-05 3.92018 2.87286e-05 3.95174
81 161 | 8.28181e-06 3.96089 7.21997e-06 3.97905
ng n1 | L in block 0 ratio L in block 1 ratio
6 11 0.0006622 0.00051287
11 21 | 0.000194007 3.41328 0.000137398 3.73273
21 41 5.20312e-05 3.72867 3.51015e-05 3.91431
41 81 1.34408e-05 3.87114 8.8388e-06 3.9713
81 161 | 3.41357e-06 3.93746 2.2156e-06 3.98935
Reference results for hg = h;.
ng N1 | Lo in block 0 Ls in block 0 | Lo in block 1 L2 in block 1
6 6 0.00288425 0.0010893 0.00288425 0.00117384
11 11 | 0.000736578  0.000280968 | 0.000736578  0.000299917
21 21 | 0.000185341 7.12195e-05 0.000185341 7.41716e-05
41 41 4.63929e-05 1.79235e-05 4.63929¢-05 1.83303e-05
81 81 1.16036e-05 4.49551e-06 1.16036e-05 4.54876e-06
161 161 | 2.90103e-06 1.1257e-06 2.90103e-06 1.1325e-06

4. Numerical Examples

The testcases are concerned with the solution of

(13) ~V*u = f on Q and u = g on 9.

The domain Q = Qg U Q; consists of two subdomains Qy = (—1,0) x (0,1) and
0 = (—h1,1) x (0,1). The coordinates of the grid points are (z;,y;), where
T; = Tref+th and yj; = Yrer+jh, fori =0,1,... ,(no—1) for block 0; i = 0,1,... ,ny
for block 1 and j =0,1,...,(n—1). The reference point for block 0 is (—1,0) and
for block 1 it is (—h1,0). The grid sizes are hg = 1/(ng — 1) and hy =1/(n; — 1).
The interface I is defined by x = —h; /2. The right-hand side f and the boundary
conditions g are chosen such that the exact solution is u; resp. us in the testcases,
where u(z,y) = exp(—z? — y?) and ua(z,y) = exp(ax)sin(By), where a = 2 and
g = 8.
By definition the error is e; ; = u(x;,y;) — u;; where u(z;,y;) is the exact
Solution and u;; is the computed approximation. In Tables 1-3 we list both the
L norm and Ly norm of the error, defined by L. (e) = max; ;le; ;| and Ly(e) =

NES v

The results for —V2u1 = fi on a nonmatching grid are given in Table 1. We
also give the results for the same problem on matching grids. This allows us to
verify the accuracy of the results. In Table 2 we give the results for —V2uy = fs.
The ratios in the fourth and sixth columns approach 4 as the mesh widths are
divided by 2, showing that the method is second order accurate.

To emphasize the importance of consistent interpolation, we give in Table 3 the
results for —V?uy = f, when bilinear interpolation is used. In this case (2) is not

nlg
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TABLE 2. Results for uq(z,y) = exp(2z) sin(8my).

Results for hg = 2h;.

ng N1 | L in block 0 ratio Lo in block 1 ratio
6 11 7.23983 4.21601

11 21 0.48669 14.8756 0.718661 5.86648
21 41 0.102748 4.73673 0.17356 4.14071
41 81 0.0249472 4.11862 0.0453624 3.82608
81 161 | 0.00656458 3.80027 0.011314 4.0094
no ni1 | Lo in block 0 ratio L5 in block 1 ratio
6 11 3.20061 1.66157

11 21 0.204226 15.6719 0.303296 5.47838
21 41 0.0435961 4.6845 0.0748621 4.0514
41 81 0.01074 4.05923 0.0188233 3.9771
81 161 0.00269816 3.98049 0.00473253 3.97743

Reference results for hg = h;.
nog N1 | Leo inblock 0 L2 in block 0 | Lo in block 1 L2 in block 1

6 6 18.0965 6.69002 47.1923 21.3855
11 11 0.717338 0.264132 3.3735 1.40949
21 21 0.136687 0.0502781 0.718661 0.301632
41 41 0.0321275 0.011811 0.17356 0.074284

81 81 0.00831887 0.00290772 0.0453624 0.0186726
161 161 | 0.00207194 0.000724103 0.011314 0.00469548

TABLE 3. Results for up(z,y) = exp(2z)sin(8my) when bilinear
interpolation is used.

ng N1 | Lo in block 0 L in block 1 | L2 in block 0 L» in block 1

712 9.63784 7.65477 4.32959 2.7709
12 22 0.847174 0.995454 0.262247 0.366744
22 42 0.142845 0.220307 0.048968 0.082186
42 82 0.0315985 0.0496966 0.011165 0.0197278

82 162 | 0.00710074 0.0118877 0.00271561 0.00485607

satisfied. The results are for the same problem but solved on shifted grids. The
reason for using shifted grids is that an interpolation is required for every point in
Q7, while for grids as in Fig. 2 only half of the points in 2; require an interpolation
since the other points match some point in €2,.. The coordinates of the grid points
are now given by (z;,y;) where T; = Tyef + (i — 5)h and y; = Yret + (j — 3)h for
i=0,1,...,(n—1)and j = 0,1,...,(n — 1). The reference point for block 0 is
(—1,0) and for block 1 it is (0,0). The grid sizes ho = 1/(no—2) and hy = 1/(n1—2)
are the same as in the previous case. Since an inconsistent interpolation is used,
the error is larger.

5. Concluding Remarks

We studied an overlapping nonmatching grids finite difference method. A con-
sistency condition is introduced for the nonmatching grids interpolation operator,
and under the consistency condition we proved second order global accuracy of the
discretisation scheme.
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