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1. Introduction

Fluid structure interaction phenomena occur in a large number of applications
and the literature on the subject is quite important, both from the practical and
implementation point of view. Nevertheless, most of the applications are focused
on a particular range of situations in which the domain that is occupied by the fluid
is essentially assumed to be independent on time. Recently, a lot of effort has been
made on the numerical simulations of fluid structure interactions in the case where
this assumption is no more true and, in particular, in situations where the shape of
the domain occupied by the fluid is among the unknowns of the problem. We refer
for instance to the works [9, 10, 11] and also to some web pages' where medical
and engineering applications are displayed. We refer also to [6] for an analysis of
the mathematical problem.

This new range of applications is made possible thanks to the increase in com-
puting power available and the recent advances in CSD and CFD. Indeed, the
current implementations for the simulation of the coupled phenomena are mostly
based on the effective coupling of codes devoted to fluid simulations for the ones,
and structure simulations for the others. Such a coupling procedure allows for flex-
ibility in the choice of the separate constitutive laws and modelisations of the fluid
and structure separately and allows also for the rapid development of the simu-
lation of the interaction phenomenon. This flexibility is however at the price of
the definition of correct decoupling algorithms of the different codes that lead to
a resolution of the coupled situation. In this direction, some attention has to be
given for the time decoupling and we refer to [11, 10, 8] for numerical analysis of
this part. Another problem has to be faced which consists in the coupling of the
spatial discretizations. This difficulty, already present in the former works (where
the shape of the fluid part is fixed), is certainly enhanced now that the time de-
pendency has increased by one order of magnitude the size of the computations.
Indeed, it is mostly impossible to afford the same mesh size on the fluid and on
the structure computational domains, especially in three dimensional situations.
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Another reason for this difficulty appears when different definitions of finite ele-
ments are naturally introduced in the structure (hermitian for plates) and the fluid
(lagrangian for fluid).

The problem of coupling different discretizations occurs not only in the case
of the interaction of different phenomena, but also in cases where, taking benefit
of a domain decomposition, one wants to use different discretizations on different
subdomains so as to optimise the discretization parameters and the final CPU time.
In cases where, a priori, (exact) continuity should be imposed on the unknown
solutions we have to face to the same difficulty as before for similar reasons. The
mortar element method [1] has been proposed in this frame to produce an optimal
approximation in case of variational approximations of elliptic and parabolic partial
differential equations.

In this paper we state the main results concerning different ways of impos-
ing these different discrete continuities with a particular interest to the coupling
conditions that lead to the optimality of the global approximation.

The modelization that we shall consider here is the two or three dimensional
incompressible Navier Stokes equations, for the fluid, and a linear elasticity for the
structure. In addition, the structure will be assumed to be of small thickness in
one dimension so that a one or two dimensional behaviour of beam or plate type
will be used.

2. Formulation of the continuous and discrete problems

Let 2p(t) be the (unknown) domain occupied by the fluid at any time ¢ during
the simulation, we consider that the boundary 9Q(t) is decomposed into two open
parts :

3QF(t) = Fo U f(t)

where I'y is independent of time and the (unknown) part T'(¢) is the interface
between the solid and the fluid. Note that I'(t) coincides with the position of
the structure at time ¢t. In this fluid domain we want to solve the Navier Stokes
equations : Find u and p such that

9
" _8_‘:_VAu+Vp+u.Vu = f inQp(t),
divau = 0 inQp(t),

these equations are complemented with appropriate boundary conditions over T’
(that we shall take here as being of homogeneous Dirichlet type on the velocity)
and of coupling type over I'(t) (that we shall explicit in a while). We consider
now the structure part, that is assumed to be set in a Lagrangian formulation, i.e.
the unknowns will be the displacement of the structure points with respect to a
reference configuration. Under the assumptions we have done on the structure, we
have a reference set Q% (that can be the position of the structure at rest) and the
position of the structure in time is parametrised by the mapping

x — x+d(x,t)

from Q% onto Qg(t) that coincides with I'(¢). The equations on b is here implicitly
given in an abstract variational framework : find d such that d(.,t) € Y and for

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



264 CELINE GRANDMONT AND YVON MADAY

anybeY
2) %t-‘;(x, t)b(x)dx + a(d(., t), b) = G(b)(t)
QO

Here Y is some appropriate Hilbert space and G is the outside forcing term that
is applied to the structure. We shall assume in what follows that this forcing term
only results from the interaction with the fluid and is equal to the fluid stresses on
the interface I'(t). The bilinear form a is assumed to take into account the elastic
behaviour of the structure and is assumed to be elliptic over Y. The remaining
constraint is the coupling between the fluid velocity and the displacement. Actually
we want to express the fact that the fluid sticks to the boundary I'(t), and thus

vx € 0%, u(x+d(x,t),t) = g—(ti(x, t)

Assuming that we are able to give a proper definition to the space L?(Qr(t)) of
all measurable functions defined over Qg (t) with square integrable and H!(Qg(t))
its subspace of all elements the gradient of which belongs to L?(Qr(t)), we first
set Hjr, (Qr(t)) as the subspace of H'(r(t)) of all functions that vanish over Iy,
then X (t) = (Hgp,(Qr(t)))?, and we propose a global variational formulation of
the coupled problem : find (u, p,d) with

Ve, u(.,t) € X(t)

vt, p(.,t) € L2(Qp(t))
(3) vt, d(.,t)eY

vt, vx € %, u(x+d(x,t),t) = %(x, t)
such that, for any (v,b) in the coupled space V defined as
V={(v,b)e X(t)xY /v(x+d(x,t)) = Ver}

the following equation holds

/ Ql—lv + l// VuVv + / u.Vuv + / pV.v
Qr) O ) Qr(t) Qr(t)

(4) +/ a—%bm(d,b):/ fv, Y(v,b) € V.
o Ot Qr(t)

/ V.aug=0, Vg€ L*(Qp(t)).
Qp(t)

It has already been noticed (see eg [3] and [6]) that, provided that a solution exists
to this system, it is stable in the following sense

(5) lall Lo 0,72 (2r () L2 0,1 H (@ (1)) < ()
and
(6) ldllw e 0,752 )L 0,13v) < o(f)

Actually it is the kind of stability that we want to preserve in the spatial discretiza-
tion. To start with, we discretize the reference configuration Q% with an appropriate
finite element mesh of size h and associate an appropriate finite element space Y.
We have now to determine a discretization associated to the fluid part. There are
many ways to proceed. Here we shall view the domain Qg(¢) as the range, through
some (time dependent) one to one mapping ®(t), of some domain Qr (e.g. the
initial domain Q(0) and we shall take this example hereafter). We assume also
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that the boundary of the domain 0 r is composed of the structure reference do-
main Qg(0) and a part [y associated to the fixed portion I'y. We shall mesh Qf
(with a triangulation of size H) and define over this (fluid) reference domain an
acceptable couple (X w, M 1) of finite element spaces for the approximation of the
Stokes problem (we refer to [5] or [2] for more about this question). We then use
the mapping ®(¢) to define the mesh and the appropriate spaces over g (t). The
major question is then : how is defined the mapping from Q) onto F(t)?

Of course, it has to coincide in some sense with x + dp(x,t). Hence we define
an operator 7}, that will allow to associate to each x + dj(x,t) a discrete position
of the interface 7};(x 4+ dn(x,t)) adapted to the mesh (of size H) that exists on the
side €2 \ I'g. From this position 7} (x + d(x, 1)) extended to I\ by the identity
(that is thus only given over the boundary of O F) we define, by prolongation, a
mapping ®y(¢) that is a finite element function over the mesh of QF(O). This
mapping provides, at the same time, the domain Qg p(t), the mesh on this domain
and the spaces of discretization (X (t) and My (t)) and finally the velocity of the
mesh uj; that verifies

(7) uy (7 (X + da(x,1)),t) = ﬂﬁ(%(xat))

In order to define the discrete problem associated to (4), we first give the proper
interpretation at the discrete level of the equality between the velocity of the fluid
and the velocity of the structure. Of course, the equality all over the interface
cannot be exactly satisfied, this is why we have to introduce again a projection
operator my from the h mesh onto the H one. We introduce the discrete equivalent
of V as follows

Vh,H(t) = {(VH,bh) € XH(t) X Yh, VH(W;(X + d(x, t)),t) = WH(bh(X, t))

and we look for a solution (uy,py,dp) € Xg(t) x My(t) x Y;, such that

ou 1
/ —HVH + l// VuyVvy + —/ uy.Vuyg.vyg—
Qurt) Ot Qu,r (1) 2 Jayr()

1 t t
5 uy.Vvyg.uy +/ MU*H.H-I- pyV.vg+
(8) Qgﬁii(t) Th(t) 2 Q. r ()
—avby +a(dy, by) = / vy, Y(va,bp) € Viu(t),
aq Ot Qi p(t)

Qp,r(t)

and of course complemented with the coupling condition
adh (X, t) )
ot

Note that we have chosen here, as is often the case, to treat the nonlinear
convection terms in a skew symmetric way.

(9) uy (1 (x +d(x,1)),t) = ma (

. ody | .
It is an easy matter to note that (ugy, a—th) is an admissible test function since

from (9), it satisfies the coupling condition on the interface. By plugging this choice
of test functions in equation (8) and using the discrete incompressibility condition
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in (8) we first get

1 du? ‘ 2 (t
/ ~ A +z// (Vuy)? +/ i )u}I.n
Qur(t) 2 Ot Qe (t) Tu(t) 2

82dh 8dh 8dh
5 Aas + a dha A, ) — / fll )
QY o2 ot ( ot ) Q p(t) "

Reminding the Taylor derivation theorem about integral derivatives, and recalling
that the velocity of the interface is u};, we end at

1d/ 2 / 2
—— uy +v (VU.H)
2dt Qp F(t) Qu F(t)

1d adp\> 1d
+§a /szg <7> + §Ea(dhydh) < Wl 22 penllamll L2y e )

which, similarly as in the continuous case (5),(6) leads to a stability result (and
thus to an existence result on any fixed time) of the discrete solution

(10) s [[ o 0,751 (@t p () HY (013120, (1))

Fldrll Lo 0.7:01 2)nw 1 (0,7 12(0) < C(f)
Now that this problem is set, we want to understand how to define the operator
my so as to obtain an optimal error that could read

(11)

lu—ugllLz20mrm) + lp = PrllL20102) + 1A = drl L 0,711
< cinfllu—vi{[r2riun +infllp = gulle2.ri02) +inffd = bafl o 1ir).
h

This error analysis is far out of hand since currently, as far as we know, no gen-
eral existence result is available on the continuous coupled problem in the general
case (see however [6]). Nevertheless, since this discretization question is mainly
related to the spatial discretization, we present in the following section the numer-
ical analysis of a simplified steady problem in which we believe that all the main
features for the definition of the coupling operator my are present.

3. Steady State Study

We shall degenerate here the original problem as follows:

e the problem is steady

e the “fluid equations” are replaced by a Laplace equation

e the structure has only a normal displacement that is modelled through a
fourth order equation

We consider the problem where a Laplace equation is set on an unknown domain
that is delimited over an edge, the equation of which is determined through a fourth
order equation in the right hand side of which stands the normal derivative of the
solution to the Laplace equation. We denote by O =]0, 1[? the unit square of R?.
We take two given functions f and g respectively in (L?(R?))? and H2(0, 1).

We are looking for v = (vy,v2) € (HA(0(d)(€2)))? such that :

{——Av = f inp(d)(Q),

(12) .
v = 0 over do(d)(Q?),
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and d € H2(0,1) such that

3 % = g-((Vv)op(d) cof Vp(d).n)y sur (0,1),
L) = Ld0)=d(1) = d0) =0,
where ¢(d) maps §2 onto ¢(d)(£2) and is one to one and satisfies on the interface
(14) e(d)(z,1) = (z,1+d(z)).
A simple choice for ¢(d) is the following
(15) o(d)(z,y) = (z,y + yd(z)).

We can rewrite this strong formulation in a variational formulation. We introduce
the space of test functions

Va= {(w,b) € Hy(o(d)() x Hy r, (o(d)() x HF(0,1)/
wp 0 p(d) = bsur |0,1[x{1}}.

The problem is then thg following :
find (v,d) € (H} (o(d)(2)))? x HZ(0,1) such that

1 20 2
d*d d*b
VVVW+/ —————z/ fw+ < g,b>g 2 e
(16) L(d)(ﬁ) o dz®dz®  J ) I
V(W, b) € V,.

Let ¢ and « be two real numbers, 0 < ¢ < 1 and 0 < a < 1/2. We search the
displacement in the set defined by

B ={2€ HZ(0,1) / 2l -0 o) < M1 =)},

where M is the continuity constant of the injection of H2~%(0, 1) in C'([0,1]). The
problem (16) has at least a solution, for small enough exterior forces. We have

THEOREM 1. Assume that f and g satisfy
lgllsi-20.1) + CEEll(L2@e)> < ML —e).

Then there exists a solution of (16), (v,d) € (H(o(d)(Q))? x (HZ(0,1)NBx. If we
suppose, moreover, that the function f is lipschitz with an L?-norm and a lipschitz
constant small enough, then the solution is unique.

The proof of this theorem is based on a fixed point theorem. For a given
deformation v of the interface I', we have the existence of (v(7y),d(y)) and we prove
that the application T defined by :

T: B® — T(B%)
vy o= d(y),

satisfies the hypothesis of Schauder theorem.

Next, we want to discretize the problem. For the fluid part, we consider a P
finite element discretization, with £ > 1, we denote by H the associated space step
and Xy the associated finite element space. This discretization of the reference
domain Q is mapped on the deformed configuration as was explained in section
2. For the structure part, we consider P;- Hermitian finite element, since the
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displacement is solution of a fourth-order equation. The space step is denoted by
h and Y} is the associated finite element space.

To discretize the problem we are going to work with the variational formulation
but written on the reference domain Q2. With the help of the mapping p(d) we can
change of variables in (16). We obtain

t 1 Ud?d d?b
/ Vp(d)""Vp(d)™ det(Vp(d)V(u)Vw + | ———— =
(17) Q 0 d.’l? dl‘
fop(d) det(Vo(d))w+ < g,b > -2 g2y Y(w,b) € V*
O
where

v = {(w,b) € H}(Q) x Hi () x H}(0,1)/ws =bsur T},

and v o p(d) = u. We set F(v) = Vp(v)"'Vp(v)~! det(Vp(y)).
The discrete variational formulation is the following find uy € (X%)? and dj, € Y}

such that
1 52 2
d*dy, d°by,
F —_— =
(18) /Q (dn)VupgVwy + o dx? dz?
< g,b >H'2,H§ +f(2(1 + dh)foﬁp(dh)WH, V(WH,bh) € VH,h,
with
Xy Y {vecQ) / vire Pu(T), VT € 14},

v Y fbe ' (0,1]) / bls € P(S), VS € m)nH3(0,1),

X% Y (vec® Q) / vire P(T), VT €t} 0 HL(S),
Virn = {(wi,bn) € (Xu)2 x YL / wilr, =0, (wr)2le = g (bs),
(

WH)I S X%}

and Ty (resp. 7) denotes the triangulation associated to the fluid part (resp. to
the structure) and I1y represents the matching operator of the test functions. As
was explained in the previous section, the nonconforming grids prevent the discrete
test functions to satisfy the continuity condition at the interface. The discrete
space of test functions V5, is thus not included in the continuous space V. We are
going to study different type of matching : a pointwise matching and an integral
matching. On one hand, we will consider for I1y the finite element interpolation
operator associated to the fluid part, and in the other hand the mortar finite element
operator [1]. So, we have the two cases

Vin = {(wg,bn) € (Xu)*xYy [ wale, =0, (Wa)olr = Ir(bn),

(19) (Wi)1 € Xir},
where Iy denotes the finite element interpolation operator, and
Varn = {(wu,bn) € (Xu)*xYy / wrlr, =0, (Wg)ilr =0,
1
(20) [t = iy = 0 v € X},
0

where Xp(I) is a subspace of codimension 2 in X (T, space of trace on I' of Xy
and define by

Xu() Y {wp € Xy(@)NTery, if (0,1)€T or if (1,1) €T, wylpnr € Pe1(T)}.
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THEOREM 2. Let f € (W2°°(R?))? and g € H™%(0,1) there exists (up,dp) €
XY x Y solution of (18) such that
For the pointwise matching through the interpolation operator Iy, we have
o if k<2

ld=dnllmzon < CEN) [HE+)1d = dillzon]

lu—wnlgaye < CEN [HE+ld = diluzon]

o ifk>2
1

IN

Id = dnllazcon C(EN) [H2 + ld - &3 30,

lu—wnllgpay: < CEN [H2+ld=dilluzon]
For the matching through the mortar operator, we have

ld=dnlmzon < CEN [HE+)d = dilluzon]

IN

u—un 02 C(f,)) [Hk +lld = dillmz 0. |

where d;, denotes the projection of d on Y in semi norm H?(0,1).

We remark that for the finite element interpolation operator we obtain opti-

mal error estimates when the degree of the fluid polynomial is less or equal to 2.
These estimates are no more optimal when k > 2. This is due to the fact that the
displacement is solution of a fourth order equation. When the weak matching is
imposed through the mortar operator then the error estimates are optimal in all
the cases.
The proof of this result is based on a discrete fixed point theorem due to Brezzi
Rappaz Raviart in a modified version due to Crouzeix [4]. This theorem gives us
the existence of the discrete solution together with the error between this discrete
solution and the exact solution. We want to underline the reason why the point-
wise matching yields optimal error estimates in some (interesting) cases. When we
consider the nonconforming discretization of a second order equation using nonover-
lapping domain decomposition for the pointwise matching the error estimates are
never optimals. In fact in both situations, the error analysis involves a best fit error
and a consistency error which measures the effect of the nonconforming discretiza-
tion. Classically, for the Laplace equation (c.f. Strang’s lemma ) this term can be
written as follows

Ju
wp €V '|w5||H1/2(F)

[ws]

where [ws] represents the jump at the interface of the functions belonging to the
discrete space Vs, and u denotes the exact solution. In the fluid structure interac-
tion, even if we deal with a non linear problem a similar term appears (not exactly
under this form) in the proof and affects the final estimate. The jump of the test
functions at the interface is equal to wy — by, = I (by) — by. Since by, is H2(0,1),
for Iy = Iy we have

(75 (br) = ballL2(0,1) < CH?||brlm20.1)-
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TABLE 1
“1D Structure ” “1D Structure ” “2D Structure ”
second order operator | fourth order operator | (Laplace equation)

Py, 2D“Fluid”

+ i k =1 optimal k < 2 optimal non optimal
interpolation k > 1 non optimal k > 2 non optimal
Py, 2D“Fluid”

+ optimal Vk optimal Vk optimal Vk

Mortar Method

That explains why for £ < 2 the estimates is optimal. On the opposite the integral
matching (mortar element method) gives for all value of k£ optimal error estimates.
We have also studied a linear problem in the case where the displacement is solution
of a second order equation on the interface (this is the case when the longitudinal
displacements are taken into account). We can summarise the results in Table 1.
For more details see [7].
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