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1. Introduction

The purpose of this paper is to bring to the domain decomposition community
certain implications of a new operator trigonometry and of the Robin boundary con-
dition as they pertain to domain decomposition methods and theory. In Section 2
we recall some basic facts and recent results concerning the new operator trigonom-
etry as it applies to iterative methods. This theory reveals that the convergence
rates of many important iterative methods are determined by the operator angle
¢(A) of A: the maximum angle through which A may turn a vector. In Section 3 we
bring domain decomposition methods into the operator trigonometric framework.
In so doing a new three-way relationship between domain decomposition, operator
trigonometry, and the recently developed strengthened C.B.S. constants theory, is
established. In Section 4 we examine Robin—-Robin boundary conditions as they
are currently being used in domain decomposition interface conditions. Because
the origins of Robin’s boundary condition are so little known, we also take this
opportunity to enter into the record here some recently discovered historical facts
concerning Robin and the boundary condition now bearing his name.

2. Operator Trigonometry

This author developed an operator trigonometry for use in abstract semigroup
operator theory in the period 1966-1970. In 1990 [9] the author found that the

Kantorovich error bound for gradient methods was trigonometric: E;/ 2(xk+1) =

(sin A)E}L‘/ ®(z). Later [14] it was shown that Richardson iteration is trigonometric:
the optimal spectral radius is popt = sin A. Many other iterative methods have
now been brought into the general operator trigonometric theory: Preconditioned
conjugate gradient methods, generalized minimum residual methods, Chebyshev
methods, Jacobi, Gauss—Seidel, SOR, SSOR methods, Uzawa methods and AMLI
methods. Also wavelet frames have been brought into the operator trigonometric
theory, see [6]. The model (Dirichlet) problem has been worked out in some detail
to illustrate the new operator trigonometryc theory, see [5]. There ADI methods
are also brought into the operator trigonometric theory. For full information about
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this new operator trigonometry, we refer the reader to [9, 11, 10, 12, 14, 13, 18]
from which all needed additional details may be obtained.

For our purposes here it is sufficient to recall just a few salient facts. The central
notion in the operator trigonometry theory is the angle of an operator, first defined
in 1967 through its cosine. Namely, the angle ¢(A) in the operator trigonometry is
defined for an arbitrary strongly accretive operator A in a Banach space by
Re (Az,x)

| Az]l||z]| *
For simplicity we may assume in the following that A is a SPD matrix. By an early
(1968) min-max theorem the quantity sin A = inf.~ ||eA — I|| enjoys the property
cos? A +sin? A = 1. For A a SPD matrix we know that
AL 2L An — A1

in A = .
I VL W W

(1) cos A = inf x € D(A), Az #0.

(2) cos A =

3. Domain Decomposition

Here we will establish the general relationship between domain decomposition
methods and the operator trigonometry by direct connection to the treatments of
domain decomposition in [19, 3, 23, 21, 2, 20|, in that order. Proofs and a more
complete treatment will be given elsewhere [4].

We turn first to the treatment of domain decomposition methods in [19, Chap-
ter 11]. Using a similar notation, let A > 0, W, = A, > 0, assume there exist upper
and lower bounds C"PP*" and Clower such that the decomposition, z = ), pyaX
exists for every z € X and such that
(3) 1 _oo < X,ApaX oY) s cuver _ 1

r- e (Az,7) R v
Here v and I are the optimal bounds in W 2445 S A S ryaddst i.e., the condition
number x(W 1 A) is the ratio I'/y. Then it follows for two nonoverlapping domains

: g addSI \ _ || psaddSI S e
that the optimal convergence spectral radius is p(MgS > ) = [MgE > |4 = 752

When conjugate gradient is applied to the additive Schwarz domain decomposi-
tion algorithm, in the two level case the asymptotic convergence rate improves to

p(CGMZ4S! ) = §/1 + /1 — 62 where

eoptimal

(4) 6= sup —(m, y)a
2€R(p1).weR(p) 1Tl allylla

is the C.B.S. constant associated with the two-level decomposition.

THEOREM 1. [4]. Under the stated conditions, the optimal convergence rate of
the additive Schwarz domain decomposition algorithm is trigonometric:
p(Mgsaas: ) = sin(W~Y2AW~1/2). In the two level case with the conjugate gradi-
ent scheme applied, the optimal asymptotic convergence rate is also trigonometric:
p(CGMegg?ﬂal) = Sin((W_l/zAW_l/2)1/2).

We may obtain an abstract version of Theorem 1 by following the abstract
treatment of [3].

THEOREM 2. [4]. With R and R the embedding (restriction) and conjugate
(prolongation) operators for V =WoxVix---xV; and B defined by the Fictitious
Subspace Lemma as in [3], pohue® = sin(RB~!R* A).
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Next we comment on an important connection between the operator trigonom-
etry and the C.B.S. constants which is inherent in the above results. Turning to
[23], for the preconditioned system BA with BSPD and p = || — BA||4 < 1, one

knows that x(BA) = %—_tg. When optimized, the preconditioned Richardson itera-

tion u**! = u* + WB(f — Au*) has error reduction rate (k(BA) — 1)/(k(BA) + 1)
per iteration. This means the error reduction rate is exactly sin(BA), [14, The-
orem 5.1] applying here since BA is SPD in the A inner product. From these
considerations we may state

THEOREM 3. [4]. Under the above conditions for the preconditioned system
wBA, the spectral radius p = ||I — wBA||a plays the role of strengthened C.B.S.
constant when w = w* optimal.

The principle of Theorem 3 could be applied to the whole abstract theory
[21], i.e., to additive multilevel preconditionings BA = Y_%_, T; and multiplicative
preconditionings BA = I-5""_ (I-T,_;). The relationships of this principle to the
Assumptions 1, 2, 3 of the domain decomposition theory are interesting, inasmuch
as the three constants cg, p(€), and w of those three assumptions are closely related
t0 Amax(BA) and Apin(BA), viz. ¢5% = Apin(BA) = -+ = Apax(BA) = w[1+p(€)).

Next we turn to operator trigonometry related to the FETI (Finite Element
Tearing and Interconnecting) algorithm [2]. See [8] where in an early paper we
discussed the potential connections between Kron’s tearing theories and those of
domain decomposition and FEM and where we utilize graph—theoretic domain de-
composition methods to decompose finite element subspaces according to the Weyl—
Helmholtz—Hodge parts, which permits the computation of their dimensions. The
FETI algorithm is a nonoverlapping domain decomposition with interfacing repre-
sented by Lagrange multipliers. To establish a connection of FETI to the operator
trigonometry, let us consider the recent [20] analysis of convergence of the FETI
method. There it is shown that the condition number of the preconditioned conju-
gate gradient FETI method is bounded independently of the number of subdomains,
and in particular, that

Amin(Pv MPyF)  cic3 h
where Py F is the linear operator of the dual problem of interest and where Py M
is its preconditioner, ¢; and ¢y are lower and upper bounds for F', ¢3 and ¢4 are
lower and upper bounds for M, and where v = 2 or 3 depending on assumptions
on the FEM triangulation, h being the characteristic element size, H an element-
mapping-Jacobian bound.

THEOREM 4. [4] The operator angle of the FETI scheme is bounded above ac-
cording to sin g(Py M Py F) = (C(1 + log )7 — 1) /2.

4. Robin Condition

To reduce overlap while maintaining the benefits of parallelism in Schwarz
alternating methods, in [22] a generalized Schwarz splitting including Robin type
interface boundary conditions was investigated. Certain choices of the coeflicients
in the Robin condition were found to lead to enhanced convergence. In the notation
of [22] the Robin conditions are written g;(u) = w;u + (1 — wi)g—z, i=1,2, for two
overlapping regions. Later in the discretizations another coeflicient « is introduced,
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a related to w by the relation w = (1 — «)/(1 — @ + ha), h the usual discretization
parameter. The case w = 1 (@ = 0) corresponds to Dirichlet interface condition,
the case w = 0 (@ = 1) corresponds to Neumann interface condition. Optimal
convergence rates are found both theoretically and for computational examples for
a in values near 0.9, i.e., for w near 1/(1 + 9h).

Let us convert these coefficients to the standard Robin notation (7]

(6) g—z +agu=f

where we have used ag for the Robin coefficient to avoid confusion with the a of
[22]. Then in terms of the w of [22] the Robin condition there becomes 2% +w(1—
w)~lu = f where the right hand side has absorbed a factor (1 —w)~!. For the
successful a &~ 0.9 of [22] the Robin constant ag ~ 1/9h. Since h was relatively
small in the simulations of [22], this means that ap was relatively large and that
the Robin condition employed there was “mostly Dirichlet.” This helps intuition,
noted in [22] as lacking.

Next let us examine the theoretical analysis of [22]. Roughly, one wants to
determine the spectral radius of a block Jacobi matrix J = M~!N. The route to
do so travels by similarity transformations from J to J to G to G’ to HG'H to
elements of the last columns of T, ' and T, ' to four eigenvalues A 2 3 4 and hence
to the spectral radius of J. How have the Robin interface conditions affected the
spectral radii of J depicted in the figures of [22]? To obtain some insight let us
consider the following simple example. The one dimensional problem —u” = f is
discretized by centered differences over an interval with five grid points zg, ..., x4,
with a Robin boundary condition (6) at zy and x4. For the three interior unknown
values uy, uo, u3 we then arrive at the matrix equation

2—-08 -1 0 U chB + fi
(7 -1 2 -1 uy | = fa
0 -1 2-3 us dhf + f3

where we have absorbed the left Robin boundary condition —(u; ~ug)/h+arug = ¢
and the right Robin boundary condition (us4 — u3)/h + agus = d, and where
denotes (1 + agh)™!. Then the matrix A of (7) has eigenvalues A\ = 2 — 3/2 —
(B2 +8)1/2/2, Ay = 20, A3 = 2 — (/2 + (B> + 8)'/2/2. For the successful
a = 0.9 and assuming h = 1/45 (corresponding to [22]) we find 8 = 0.9 and hence
A1 = 0.066, A2 = 1.1, A3 = 3.034. Using Dirichlet rather than Robin boundary
conditions corresponds to 8 = 0 and A; = 0.586, Ay = 2, A3 = 3.414. The condition
numbers are Krobin = 45.97 and Kpirichlet = 9.83. The Robin condition moves the
spectrum downward and increases condition number. The worst case approaches
Neumann and infinite condition number. One needs to stay mostly Dirichlet: this
is the intuition. Also the size of the grid parameter h is critical and determines the
effective Robin constant.

Turning next to [1] and the Robin—Robin preconditioner techniques employed
there, we wish to make two comments. First, for the advection—diffusion problems
Lu = cu+ad-Vu—vAu = f being considered in [1], the extracted Robin—Robin
interface conditions

(8) ( 0 —aﬁk)l}k:gk

Yone 2
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is really just an internal boundary trace of the differential operator and therefore is
not independent in any way. A better terminology for (8) might be Peclet—Peclet,
corresponding to the well-known Peclet number P = % over a fluid length L. Sec-
ond, when the sign of @ may change with upwinding or downwinding, the coefficient
ap in (6) may become an eigenvalue in the boundary operator. Solution behavior
can then become quite different. Such an internal Steklov—Steklov preconditioner
would permit interior “flap” of solutions.

Robin was (Victor) Gustave Robin (1955-1897) who lectured at the Sorbonne
at the end of the previous century. Our interest in Robin began twenty years ago
when writing the book [7]. The results of the subsequent twenty year search will
be published now in [15, 16] to commemorate the 100th anniversary of Robin’s
death in 1897. Little is known about Robin personally. However we have uncovered
all of his works (they are relatively few). Nowhere have we found him using the
Robin boundary condition. Robin wrote a nice thesis in potential theory and also
worked in thermodynamics. We have concluded that it is neither inappropriate nor
especially appropriate that the third boundary condition now bears his name.

5. Conclusion

In the first domain decomposition conference [17] we presented new appli-
cations of domain decomposition to fluid dynamics. Here in the tenth domain
decomposition conference we have presented new theory from linear algebra and
differential equations applied to domain decomposition.
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