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1. Introduction

We present an La-orthonormal polynomial basis for triangles containing 10"
degree polynomials in its span. The sixty-six basis functions are defined by using
35 generating functions {By(x,y)} with the property that By(z,y) is orthogonal
to Bk(y,z) unless they are equal. For tetrahedra, we describe methods for con-
structing a an Lg-orthonormal basis by defining generating functions By(z,y, 2)
such that the action of S3 on the arguments of By can provide as many as six
orthogonal basis functions. Thirty-five basis functions generated by 11 Bi have
been computed. These bases are particularly useful for approximating the solution
of partial differential equations using the Cell Discretization Algorithm (CDA).

The CDA allows a user to partition the domain of a problem into ‘cells’, choose
any basis on each cell, and then ‘glue’ the finite dimensional approximations on
each cell together across cell interfaces to achieve a form of weak continuity using
a method called ‘moment collocation.” This method allows a user to select a basis
tailored to the type of an equation or the geometry of the cells without having to
worry about continuity of an approximation.

If polynomial bases are used and we have planar interfaces between cells, we can
impose sufficient collocation moments so that our approximations are continuous
and we duplicate the h — p finite element method [9]. Error estimates that estab-
lish convergence of the method contain two components; the first consists of terms
arising from the lack of continuity of an approximation and the second contains
terms majorized by the orthogonal complement of the projection of the solution
onto the approximation space. However, in all trials of the method using polyno-
mial bases[4, 9, 5, 7, 6, 8], there has been no particular advantage in enforcing
continuity of an approximation; continuity does eliminate the first error component,
but by doing so a parameter in the second error component grows strongly, thus
cancelling any apparent gain by forcing continuity. This is discussed extensively in
[9]. Thus we obtain additional degrees of freedom that can, for example, be used to
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enforce a weak solenoidal condition for approximating the solutions to the Stokes
equations [8].

We have implemented the algorithm for general domains in R? partitioned into
cells with linear internal interfaces between cells. Affine transformations are used
to map any cell into a standard configuration to effect quadrature and if a basis
is defined on a cell in standard configuration, we use an affine transformation to
provide a basis for the affine image of the cell. For the most part we use cells
that are parallelograms or triangles—affine images of a unit square or unit simplex.
A ‘good’ basis for a general implementation of the algorithm is a basis that is
L, orthonormal, particularly for time-dependent problems and the construction
of a solenoidal basis [8]. Since affine transformations preserve orthogonality, it
suffices to construct orthonormal bases for the standard square or simplex. A
global orthonormal basis is then produced by a linear combination of the cell basis
functions using coefficients obtained from the QR decomposition of the matrix
enforcing the moment collocation constraints [5, 7, 6]. These arguments generalize
to R®.

Products of Legendre polynomials provide an Lo- orthonormal basis for a
square. In Section 2, for the unit 2-simplex, with vertices at (0,0), (1,0) and (0,1),
we describe the method we have used to construct an orthonormal basis with poly-
nomials of degree 10 or less in its span.

In R3; products of Legendre Polynomials produce an orthonormal basis for any
parallelepiped. In Section 3 we describe the construction of an orthornormal basis
for the standard 3-simplex. The methods we use require that we solve a set of four
simultaneous quadratic equations in five variables.

The results for tetrahedra were obtained by Hui [2].

2. Construction of a polynomial basis for triangles.

We contrive an Lo orthonormal basis B;(z,y) for the 2-simplex that uses a
method similar to the Gram-Schmidt process to sequentially introduce sets of mono-
mials 274" into the basis. The first problem is to determine how j and k should be
successively chosen to produce our basis sequence.

Consider the Taylor’s expansion of any u(x,y) around (x,,y,):

u(z,y) = u(To, Yo) + Uz (T — o) + uy (Y — Yo)+

(1/2)[ugs(z — z,)* + 2Usy (T — To) (Y — Yo) + Uyy (y — yO)Z]
+(1/3) [Uzrs (T — To)® + Buary (T — 20)2(y — Yo)+
Buayy(z — zo)(y — Yo)? + Uyyy (Y — yo)g]
+(1/4!)[uzzzz(93 - 1,‘0)4 + 4uzzzy(:E - xo)g(y - yo) + 6uxzyy(x - 1‘0)2(3] - yo)2
Fugyyy (T — To)(y — Yo)® + Uyyyy (Y — yo)4] t+...
With no other information available about u(x,y), the terms containing the mixed
partial derivatives in the expansion with coefficients containing factors 2,3,3,4,6,4,

6,4, appear to be more important than those involving .z, Uyy, Uzzz, Uyyy, and so
forth.

Polynomial approximation theory suggests that we introduce monomials into
the basis span according to increasing degree and, given any chosen degree, the form
of the Taylor’s series suggests that the monomials with equal coefficient factors,
which are either a pair {z'y’,27y'} or of form z*y* be added to the basis span
in order of decreasing coeflicient factors. Thus, for example, when generating a
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basis that spans polynomials of degree 4, we would first introduce monomial z?y?
into the basis set (with Maclaurin series coefficient u;;,,(0,0)6/4!), then the pair
{z’y, zy®}(with Maclaurin series coefficients uyzzy(0,0)4/4! and gy, (0,0)4/4!)
and finally the pair {z*,y*}. Our method follows this algorithm.

This gives a justification for increasing the number of basis functions used in
the approximation gradually, lessening the need for a new full degree basis at each
new approximation.

We call a function f(z,y) symmetric if f(z,y) = f(y,x); recalling that the
2-simplex is to be our domain for f, the axis of symmetry is the line y = .

We say function f is skew if f(z,y) = —f(y, z). The product of two symmetric
functions is symmetric; the product of two skew functions is symmetric, and the
product of a symmetric function and a skew function is skew. One easily shows
that the integral of a skew function over the standard simplex is zero. We combine
our monomials to form expressions that are either symmetric or skew and have the
same span; our sequence of generating functions is given by two sets

A= {1 (z +y),zy, (2* +7), @y +2y?), (2 +¢°),...} and

B={(z-y), (@ -v*), (2% —zy?), (° - ¢*),...}.
If we integrate by parts over the standard triangle and use a recursive argument,
we obtain

1 1-zx
/o /0 zPy?dydz = [p'q!)/(p + q + 2).

This gives us an exact (rational) value for the Ly(simplex) inner product (denoted
< -, >) of any monomials.

We use an algorithm equivalent to the Gram-Schmidt process to generate a
sequence of symmetric orthogonal polynomials {Q1, @2, ...} from generating set A
and a set of skew orthogonal polynomials {S, S,...} from B.

Our basis is obtained by combining these two sets using the heuristic suggested
by the Maclaurin series. For example, to generate the 7¢"(and 8*) basis functions,
thus introducing =2y and zy? into the basis, we form

atB=[2<Qs5Qs>?Qs £[2< 55,8 >]71/28;.

Then symmetric « is orthogonal to skew (8 and the skew span of B; skew (3 is
orthogonal to the symmetric span of A;a and 8 have norm 1/v/2, so

<a+pf,a—-p>=1/2-1/2=0

and ||a+8|P=<a,a>+<B,8>=1=|a-B|>. I B(z,y) =a+b,

then B(y,z) = a — f.

When generating basis functions with a symmetric lead term, such as 1, zy, z%y?
and so forth, where there is no skew partner, we use only the appropriate Q1, @3, @7,
... ; there is no skew (3 term.

These computations were done with care, for the matrices in the linear systems
employed by the Gram-Schmidt process are very ill-conditioned. Our computations
were nevertheless exact, for the matrices and vectors are arrays of rational numbers,
so that the solution is rational and we have written a program that does Gaussian
elimination and back substitution using rational arithmetic, thus keeping control of
the instability of the system. A set of 36 polynomials has been computed, producing
66 basis functions, which allow us to generate any polynomial of degree 10 or less.
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FORTRANT7 code and the necessary coefficients to generate the full set of basis
functions (and their first derivatives) are available from the second author.

The use of this polynomial basis for solving partial differential equations with
domains partitioned into triangles requires an efficient method for doing quadrature;
points and weights for Gaussian quadrature over triangles, exact for polynomials
of degree 20 or less, have been obtained by Dunavant [1]. As in [3], we generate
and store an array that contains the information to look up, for example, the
computations < —%Bi, (—%Bj > for use when the partial differential equation has
constant coefficients.

3. A symmetric ortho-normal basis for tetrahedra.

The Maclaurin series expansion for f(z,y, 2) is
f(0)
+fz:c + fyy + fzz
+(1/2)[2(fzyxy + f:tzzz + fyzyz) + frz$2 + fyyy2 + fzzZQ]
+(1/6)[6 fay-zy2 + 3(fmyx2y +... fyyzyQ-T +.)+ feaoz® + .. +
(1/24)[12(fray-22yz + ... ) + 6(foayy @’y +...) + 4(foway@y + ... )+
(foozez® +..)] +...

Proceeding naively as before, we assume that, for any particular degree of
basis functions, we should initially introduce monomials zPy9x" into the basis that
correspond to the larger integer multipliers: 2 then 1; 6,3 then 1; 12,6,4 then 1 and
so forth. The monomials that are associated with these multipliers occur in sets
of 1 (e.g. {zyz}), 3 (e.g. {zy,z2,2y}) or 6 (e.g. {z%y,x22,y%x, vz, 2%, 2%y}.) To
minimize the number of functions that need to be generated, ideally, our symmetric
orthonormal basis would require just one basis generating function B(z,y,z) for
each of the classes; for the classes with 3 members, {B(z,v, z), B(y, 2, z), B(2,z,9)}
would be an orthonormal set, also orthogonal to the basis functions generated

previously; we will call such functions 3-fold basis generating functions. For the
classes with 6 members, the full group S3 of permutations of B(z,y, z) :

{B(x’ y? 2)7 B(y? Z’ ‘T")i B(Z, :1:’ y)’ B(y7 x’ Z)’ B(‘T7 z? y)’ B(z’ y? x)}

would constitute an orthonormal set, orthogonal to the previously generated basis
functions; we will call these 6-fold basis generating functions.

Figure 1 shows a triangular array of the homogeneous monomials of degree 5,
with the numbers below each monomial representing the bold-face integer multiplier
to be used in the Maclaurin expansion above. For any particular degree, monomials
with the same number under them identify those that would be included in the same
set as described above. Those with higher numbers would be introduced into the
basis first.

Our study takes place in the subspace S of Lo(3-simplex) consisting of polyno-
mials in z,y and z. We denote the inner product < -, - >.

Each member of the permutation group S; induces a linear transformation on
S:

If T is the permutation (z,y,z), it acts on R® as T < z,y,2z >=< v, 2,z >;
T? < z,y,2 >= T < y,z,x >=< z,x,y >; T° is the identity. T acts on a
polynomial in the following fashion: T'(2z%yz + 3zz) = T(2z%y'z! + 3z'y02!) =
2y zx + 3yx .
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FIGURE 1. Fifth degree monomials.

Transformation P = P,, corresponds to permutation (z,y). The basic relator
is PT = T?P. Since these transformations are to act on any polynomial q(z,y, z),
we adopt the convention that, for example, in computing T P,,q(z,y, 2), Py, acts
first and then T, so the transformation TP,, = (z,v, 2)(z,y) = (z,2) and T*P,, =
(y,z). We also use notation S3 for these transformations.

We let ¢ represent a generic member of R?; given ¢, bold face symbol x®
represents the monomial x'y’ z* associated with any triple of non-negative integers
[a] = [i,7,k]. For any x*, the set of permutations of x* is

{x* Tx* T*x*, Px®, TPx*, T?Px"},

where there will be duplicates if the set has only 3 or 1 member. We let T act
on ‘powers’ [a] = [i, j, k| by defining Tla] = Tli, j,k] = [k,é,5]; Pli,j, k] = [, , k).
Then Tx® = x72, T?x* = xTT® and so forth.

In figure 1, monomials belonging in the same set (those with the same number
below them) correspond to all permutations of such a triple [¢,j,k]. If i = j = k,
there is only one monomial; if two of {7, j, k} are the same, there are three monomials
in the set; if {7, j,k} are all different, there are six.

The integral of monomial zPy?z" -over the standard 3-simplex can be shown
to be [plg!r!]/[(p + ¢ + r + 3)!] using recursive methods similar to those described
above [2]. The value of this integral is invariant under the action of S3 on the
monomials. This symmetry means that the integral depends only on set {p,q,r}.
This observation, together with bilinearity of the inner product, can be used to
prove the following lemma:

LEMMA 1. For-any polynomials G and H € S,

1. for any R € S3,< RG,RH >=< G,H >;

2. for any R € S5, < RG,H >=< G,R™'H >;

3. <G,TH >=<T?G,H >=<TG,T?H > .

Results 2 and 3 follow readily from 1; 2 shows that the members of S3 act as
unitary operators on S.

Our first basis member is the normalized constant function B; = v/6. When
only one basis function is produced, we call these one-fold generators. The images
under S3 of the next three basis-generating functions are to contain {z,y, z}, then
{zy,yz, 22} and finally {z? y? 2?} in their span.

We give some necessary conditions for recursively defining basis-generating
functions B,,; that produce three basis members under the action of T, as is

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



AN ORTHOGONAL POLYNOMIAL BASIS FOR TRIANGLES 443

the case here. Assume appropriate functions By () have already been constructed,
k=1,...,r

LEMMA 2. Suppose [a] = [i1,12,13] has ezactly two of {i1,i2,i3} equal. The
next function G is expressed as

S
3
—~
o
=
3
—
ko

)
(1) G(§) = H(x*) + Z Z ayq ;T P’ By (€)

k
where n(k) < 2;m(k) < 1. When Bi(§) is a 3-fold basis generating function, n(k) =
2 and m(k) = 0. Function H(x%) = box® + b;Tx® + byT*x*. Suppose
(I) G, TG, and T*G are orthogonal to the previous basis functions;
(I) G, TG and T*G are pairwise orthogonal and
(Ill) set {PG,PTG,PT*G} ={G,TG,T*G}.
Then, without loss of generality, the following assumptions can be made about
G, [al],{b;} and {ak,;}:
(a) PG=G;PH =H.
(b) [a] = [i1,11,13); the first two powers are equal and by = bs.
(c) (I) holds if and only if ax;; = — < H, T'P’B;, >. Thus the aki; are linear
combinations of by and by.
(d) In view of (a), arguing recursively, without loss of generality, we can assume
that all three-fold basis generators By, satisfy PBy = By. Then

if n(k) =2 and m(k) = 0,ax.1,0 = ak.2,0-

Ifn(k) =2 and m(k) = 1, ak,0,1 = k,0,0;Ak,1,1 = Qk2,0 and

k2,1 = Qk,1,0-
(e) If the substitutions in (c) and (d) are made, (I), (II) and (III) hold if and
only if < G,TH >= 0.

PrROOF.  (a) From (III) it follows that exactly one of {G,TG,T?G} must be
fixed under P. For example, suppose PG = T?G. Then TG is fixed under
P, for PTG = T?PG = T?T?G = TG. Now

r n(k)m(k)
TG(¢) = Y+ DN aka T PIB(€)
k=11i=0 j=0
r n(k) m(k)
X" 433N ki T PIB(€).
k=1 1=0 75=0
By re-labelling the ay; ; and defining [3] = T'[a], this has the same form
as (1); call it G. We are assuming that PTG = TG; thus PG = G. Then
PH(x?) = H(x?) follows immediately. Redefine G to be G.
(b) Expanding H(x”) = PH(x?) we get H(x") = box® + b;Tx? + b T?x"
= box” 4 bixT? + byxTT8 = PH(x?) = by Px® + b, PTx? + b, PT?*x”
= box"P + byxFTB8 4 poxPTTB,
Recalling that [8] = [i1,42,43] has exactly two of i,is,73 equal, one of
[8], T[] and T?[3] has these two equal integers in the first two positions and
hence this triple is invariant under P. For example, suppose that PT[3] =
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T[B]. Then PT?|3] = PTPT[A] = B8] and P[B] = T?|B]; the assumption
that PH = H then requires that by = be. If we let [y] = T[0] and express
H(xY) as byxT? 4+ byTxTP + byT?xT8 = b1x" + byTX" + byT?x" we get the
correct representation by relabelling the b;’s.

(c) This follows if we take the inner product of T%PJ By with (1).

(d) When m(k) = 0, the assumption that PBy = By, and PG = G readily give
the first result. When m(k) = 1, we have, for example, —ax 11 =
< H,TPBj, >=<T?H, PBy, >=< PT*H, By, >=< TPH, By >=
< TH, By, >=< H, TQBk >= —0ak,2,0-

(e) Since < G, TG >=< TG, T*G >=< T?G,G >, pairwise orthogonality
follows if we can establish that just one of these is zero. If the substitu-
tions in (c) are made, G will be orthogonal to all T°P? By for any choice
of H, hence orthogonal to the sums in the representation (1) for G. Thus
< G,TG >=< G,TH > . The representations in (d) give us (III).

O

This lemma shows that all we need to do to establish the existence of a suitable
G is to find some H(x®) of form box® + by (Tx® + T?x*) so that, when the substi-
tutions in (c) are made, which are linear in {bg, b}, the expression < G,TH >= 0
has a real solution. This is a quadratic equation in {bg,b;}. If we first seek only
this orthogonality, there really is only one degree of freedom here; we can set by or
by = 1 so that the requirement that < G,TH >= 0 yields a quadratic equation in
one variable. Any real root gives a suitable G with the orthogonality properties;
it’s final definition is found by normalizing so that < G,G >= 1.

The first four basis generators we have computed are

B = V6;
By =V30(2(z +y) — 1);
Bs = \/7/6(78zy + 6z(z + y) — 22z — 14(z + y) + 3);

B4=1/182 + 5610 ((6@-20)z2+\/16(x2+y2)+(2\/ﬁ-1)xy+(6\/ﬁ—17)z(x+y)
+(3 - 2V10)(z + y) + (19 — 6v10)z + (V10 — 5/2)).

One-fold basis generators, like the one with lead term xyz, are easily computed.
These are to be invariant under Ss; for any k, all ax ; ; will be equal. For example,
Bs = /2(504zyz — 63(zy + yz + x2) + 9z + y + z) — 3/2).

Bg is the first 6-fold generating function. The lead term is a linear sum of
{y2?, 222, 2y?, 222, y2?, zy*}. Tt will have representation

r n(k) m(k)

G(&) = H(x") + Z Z ak.i ;T P? By (€)
k=1

=114=0 j=0
as before, except this time all three integers in [a] are different; [a] = [0,1,2] in
this case, and

H(x®) = box® + by TX® 4 byT?*x™ + b3 Px™ + by TPx* + bs T Px”.
We wish to find values for ay ;; and b, such that
Q ={G,TG,T*G, PG, TPG,T*PG}

is a set of pairwise orthogonal functions, orthogonal to the previous basis functions.
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First note that for the functions in @ to be orthogonal to basis functions
T'PI By (€) it suffices to show that they are orthogonal to By, since ) is to be
invariant under S3 and the adjoints of operators in S35 are in Sj.

Next, since the previous basis functions are assumed to be orthonormal, for
any By, we can make the following reductions with the help of lemma 2.1. The
orthogonality requirements are

0=<G,By >=< H,Br > +ak0p0
0=<TG, By >=< G,T?>By, >=< H,T?By > +ax20
0 =< TG, By, >=< G,TBy, >=< H,TBy, > +aj1,
0 =< PG, By >=< G,PBy, >=< H,PBj, > +ak0.1
0 =< TPG, By, >=< G,PT?By, >=< G,TPBy >=< H,TPB} > +ak 1.
0 =< T*PG, By >=< G, PTBy, >=< G,T*PBy, >=< H,T*PBy, > +ax2,.

For three-fold generators, where PBy = By, the last three requirements are
omitted; the associated aj i are zero. In this way we express the ay ; ; as linear
combinations of the {b;}.

Finally, we need {b;} so that @ is a pairwise orthogonal set. Again, using
adjoints, the fifteen requirements reduce to the following four.

0=<G, TG >=< G, T*G >=< TG, T?G >=< PG, TPG >=< PG,T?PG >

=< TPG,T?PG > (Type 1)

0=<G,PG >=< TG, TPG >=< T?G,T*PG > (Type 2)

0=<G,TPG >=<TG,T*PG >=< T*G, PG > (Type 3)

0=<G,T?PG >=< TG, PG >=<T?G,TPG > (Type 4).

If the substitutions for the a ; ; are made, the members of @) are orthogonal to
the previous basis functions, and the four equations above give us four simultaneous
quadratic equations in the variables

{b03b17b2)b3sb47b5}'

For example, for Bg, where all ax ;1 = 0 with £ < 6 and we let ax; denote
ak.i,0, the four types above are equivalent to the following, where when k =1 or 5,
there is only a single term in the sum.

Type 1.

0=<G,TG >=< G, TH >=< H,TH > — Y, _, (ax 00k.1 0k 00k 2+0k 10k 2)
Type 2.

0=<G,PG >=<G,PH >=< H,PH > - Y"1_,(a? o + 2a,10x,2)

Type 3.

0=< G,TPG >=< G,TPH >=< H,TPH > - Y, _,(a} , + 2a,0a,1)
Type 4.

0=< G,T*PG >=< G,T?PH >=< H,T*PH > - Y, _,(a} | + 2ay,0a1,2)-

The normalization requirement is 1 =< G,G >=< G,H > . < G,G > is a
non-negative homogeneous quadratic form; thus < G,G >= 1 places us on the
(compact) 5-dimensional surface of an ellipsoid in R®. We initially confine our
attention to fulfilling the orthogonality requirements, so, for example, we can let
bo = 1; we must then find simultaneous roots for 4 quadratic forms in five variables.
We use a variant of Newton’s method that has proved to be quite effective in
obtaining roots rapidly [2].

A number of questions remain.
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1. We have computed 11 basis-generating functions so far, which produce the
35 basis functions necessary to have polynomials of the fourth degree or
less in their span. More are needed for practical use of this basis. Is there
some way of proving that there always exists a solution to the simultaneous
quadratics?

2. Assuming that (as is the case in our experiments) there is a one-parameter
family of solutions, what criteria should we use for selecting any particular
one? We sought solutions b such that each b; was about the same magnitude,
but with many changes of sign. For example, should we rather choose some
solution b such that just one b; has a large magnitude?

3. The coefficients become quite large; for example, in B;;, with 24 distinct
coefficients, the smallest is about 31, the largest about 4890, with 15 greater
than 1000. We used double precision Gaussian Quadrature to evaluate all the
inner products in the solution algorithm and terminated the algorithm when
b was found so that, for each 4, | f;(b) |< 10717, but tests of orthogonality
of the normalized basis functions were beginning to have significant errors,
as appears to be the case with such generalizations of the Gram-Schmidt
process. The inner products of the monomials are rational; is there a way
to exploit this as was done with the basis functions for triangles?
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