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1. Introduction

The Optimized Order 2 (OO02) method is a non-overlapping domain
decomposition method with differential interface conditions of order 2 along the
interfaces which approximate the exact artificial boundary conditions [13, 9]. The
convergence of Schwarz type methods with these interface conditions is proved in
[12]. There already exists applications of the OO2 method to convection-diffusion
equation [9] and Helmholtz problem [3]. We first recall the OO2 method and present
numerical results for the convection-diffusion equation discretized by a finite volume
scheme. The aim of this paper is then to provide an extension of a preconditioning
technique introduced in (7, 5] based upon a global coarse problem to non-symmetric
problems like convection-diffusion problems. The goal is to get the independence of
the convergence upon the number of subdomains. Numerical results on convection-
diffusion equation will illustrate the efficiency of the OO2 algorithm with this coarse
grid preconditioner.

2. The Optimized Order 2 Method
We recall the 002 Method in the case of the convection-diffusion problem:

ou

(1) L(w) = cu+ a(z, 1) 2 + bz, e

p —vAu = fin Q

C(u) = g on 90

where 2 is a bounded open set of R®, @ = (a,b) is the velocity field, v is the
viscosity, C is a linear operator, c is a constant which could be ¢ = ZI; with At a
time step of a backward-Euler scheme for solving the time dependent convection-
diffusion problem. The method could be applied to other PDE’s.

The O0O2 method is based on an extension of the additive Schwarz algorithm

with non-overlapping subdomains : 0= ul, Qi, 2N Q; =0, i #j. We denote
by I'; ; the common interface to ; and Q;, i # j. The outward normal from §; is
n; and T; is a tangential unit vector.
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The additive Schwarz algorithm with non-overlapping subdomains ([11]) is :
L(u:H—l) f» in Qi
(2) Bi(u}™") = Bi(u}), onTy;, i#j

Clul*™) = g on 09NN

I

where B; is an interface operator. We recall first the OO2 interface operator B;
and then the substructuring formulation of the method.

2.1. 002 interface conditions. In the case of Schwarz type methods, it
has been proved in [14] that the optimal interface conditions are the exact artificial
boundary conditions [8]. Unfortunately, these conditions are pseudo-differential
operators. Then, it has been proposed in [13] to use low wave number differential
approximations to these optimal interface conditions. Numerical tests on a finite
difference scheme with overlapping subdomains has shown that the convergence
was very fast for a velocity field non tangential to the interface, but very slow, even
impossible, for a velocity field tangential to the interface. So, instead of taking
low-wave number approximations, it has been proposed in [9] to use differential
interface conditions of order 2 along the interface which optimize the convergence
rate of the Schwarz algorithm. These “Optimized Order 2” interface operators are
defined as follows:

B. 0 an;—/(an;)? +4dev N 0 0
T o 2u @ 0Ty e or?

where ¢o = cy(a.nj,a.7;) and ¢3 = cz(a.n;,a.7;) minimize the convergence rate
of the Schwarz algorithm. The analytic analysis in the case of 2 subdomains and
constant coefficients in (1) reduce the minimization problem to a one parameter
minimization problem. This technique is extended in the case of variable coefficients
and an arbitrary decomposition, that is only one parameter is computed, with a
dichotomy algorithm. With this parameter we get ¢, and ¢z (see [10]). So the
002 conditions are easy to use and not costly. The convergence of the Schwarz
algorithm with the OO2 interface conditions is proved for a decomposition in N
subdomains (strips) using the techniques in [12].

2.2. Substructuring formulation. In [14], the non-overlapping algorithm
(2) is interpreted as a Jacobi algorithm applied to the interface problem

(3) DA=b

where ), restricted to €);, represents the discretization of the term B;(u;) on the
interface I'; ;, @ # j. The product D, restricted to {2;, represents the discretization
of the jump B;(u;) — Bi(u;) on the interface I'; j, i # j. To accelerate convergence,
the Jacobi algorithm is replaced by a Krylov type algorithm [16].

2.3. Numerical results. The method is applied to a finite volume scheme
[1] (collaboration with MATRA BAe Dynamics France) with a decomposition in N
non-overlapping subdomain. The interface problem (3) is solved by a BICG-stab
algorithm. This involves solving N independent subproblems which can be done in
parallel. Each subproblem is solved by a direct method. We denote by h the mesh
size. We compare the results obtained with the OO2 interface conditions and the
Taylor order 0 ([4],[2], [13]) or order 2 interface conditions ([13]).
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TABLE 1. Number of iterations versus the convection velocity’s
angle: 16 x 1 subdomains, v = 1.d — 2, CFL = 1.d9, h = Wlp
log,o(Error) < 1.d — 6

convection velocity 002 | Taylor order 2 | Taylor order 0
normal velocity to the interface 15 123 141
a=y, b=0
tangential velocity to the interface | 20 not 75
a=0,b=y convergent

TABLE 2. Number of iterations versus the mesh size: 16 x 1
subdomains, a =y, b =0, v = 0.01, CFL = 1.d9, log,,(Error) <

1.d—-6
grid 65 x 65 | 129 x 129 | 241 x 241
002 15 15 15
Taylor order 2 49 69 123
Taylor order 0 49 82 141

1

cos(m(y — 3))sin(n(z — %)) v =
log,o(Error) <1.d—6

TABLE 3. Number of iterations versus the mesh size: 16 X
subdomains, rotating velocity, a = —sin (7(y — 1)) cos (7 (z — 1)),
1d -2, CFL = 1.d9,

grid 65 x 65 | 129 x 129 | 241 x 241
002 49 48 48
Taylor order 0 152 265 568

1. We consider the problem: L(u) =0, 0<z<1, 0<y<1

with u(0,y) = §4(1,y) =0, 0 <y <1, 8%(z,1) =0, u(z,00 =1, 0<z < 1. In
order to observe the influence on the convergence both of the convection velocity
angle to the interfaces, and of the mesh size, we first take a decomposition in strips.
The Table 1 shows that the OO2 interface conditions give a significantly better
convergence which is independent of the convection velocity angle to the interfaces.
One of the advantages is that for a given number of subdomains, the decomposition
of the domain doesn’t affect the convergence. We also observe that the convergence
for the studied numerical cases is independent of the mesh size (see Table 2 and
Table 3).

2. The OO2 method was also tested for a convection velocity field issued from
the velocity field of a Navier-Stokes incompressible flow, with Reynolds number
Re = 10000, around a cylinder. This velocity field is issued from a computation at
the aerodynamic department at Matra. The computational domain is defined by
Q= {(z,y) = (rcos(),rsin(9)), 1 <r <R, 0<60<2r} with R > 0 given.

We consider the problem L(u) = 0 in  with u =1 on {(z,y) = (cos (6),sin (8)),

0 <60 < 2r}and u=0on {(z,y) = (Rcos(f),Rsin()) 0 < § < 2r}. The
grid is {(z,y) = (ricos(6;),r;sin(6,))}, and is refined around the cylinder and in
the direction of the flow. We note Np,,, = (number of points on the boundary
of a subdomain) x (number of subdomains). The OO2 interface conditions give
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'isovalues’ -----
0.0952 -----
0.19 ----

FIGURE 1. Iso-values of the solution u, v =1.d —4, CFL = 1.d9

TABLE 4. Number of iterations versus the viscosity; 4 x 2
subdomains, CFL = 1.d9, log,,(Error) < 1.d — 6

002 Taylor order 2 Taylor order 0
v=1d-5]| 56 41 119
v=1d—4| 43 121 374
v=1d-3]| 32 Nppaz = 768 Ninazr = 768
logio(Error) = =5.52 | log1o( Error) = —2.44

also significantly better convergence in that case. Numerically the convergence is
practically independent of the viscosity v (see Table 4).

3. Extension of a coarse grid preconditioner to non-symmetric
problems

Numerically, the convergence ratio of the method is nearly linear upon the
number of subdomains in one direction of space. To tackle this problem, the aim
of this paper is to extend a coarse grid preconditioner introduced in [7], [5] to
non-symmetric problems like convection-diffusion problems. This preconditioning
technique has been introduced for the FETI method, in linear elasticity, when local
Neumann problems are used and are ill posed (see [7]). It has been extended for
plate or shell problems, to tackle the singularities at interface cross-points ([6], [5],
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[15]). In that case, this preconditioner is a projection for (D.,.)2 on the space
orthogonal to a coarse grid space which contain the corner modes. This consists
in constraining the Lagrange multiplier to generate local displacement fields which
are continuous at interface cross-points. The independence upon the number of
subdomains has been proved.

In this paper we extend this preconditioner by considering a (D.,D.)s
projection on the space orthogonal to a coarse grid space. The goal is to filter
the low frequency phenomena, in order to get the independence of the convergence
upon the number of subdomains. So the coarse grid space, denoted W, is a set of
functions called “coarse modes” which are defined on the interfaces by :

o Preconditioner M1 : the “coarse modes” are the fields with unit value on
one interface and 0 on the others.

e Preconditioner M2 : the “coarse modes” in a subdomain §); are on one
interface the restriction of K;u; where u; = 1 € §; and Kj; is the stiffness
matrix, and 0 on the others.

Then, at each iteration, AP satisfies the continuity requirement of associated field
uP at interface :

(DW){(DXP —b) =0 Vi

That is, if we introduce the projector P on W+ for (D., D.)s, the projected gradient
of the condensed interface problem is:

(4) PgP =g"+ Y (DW):é;
and verify
(5) (DW)iPg? =0 Vi

With (4), the condition (5) can be written as the coarse problem :
(DW)!(DW)6 = —(DW)'g"

So the method has two level : at each iteration of the Krylov method at the fine
level, an additional problem has to be solved at the coarse grid level.

3.1. Numerical results. The preconditioned OO2 method is applied to
problem (1) discretized by the finite volume scheme with non-overlapping
subdomains. The interface problem (3) is solved by a projected GCR algorithm,
that is the iterations of GCR are in the (D.,D.)s orthogonal to the coarse grid
space. Each subproblem is solved by a direct method. We compare the results
obtained with the preconditioners M1 and M2.

1. We consider the problem: L(u) =0, 0 <z <1, 0 <y <1 with
5(Ly) = 0,u(0,y) =1, 0 <y < 1and (z,1) = 0,u(x,0) =1, 0 <z < 1. The
convection velocity is a = y, b = 0. In that case, the solution is constant in all the
domain : uw =1 in [0,1]%. Table 5 justify the choice of the preconditioner M2. In
fact, in that case the field A associated to the solution on the interfaces is in the
coarse grid space of preconditioner M2.

2. We consider the problem: L(u) = 0, 0 < z

%4(1,y) = u(0,y) = 0, 0 < y < 1 and 9%(z,1) = 0,u(s, )

I/\

1 with
r <1,

=)
=N

ow
ININ
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TABLE 5. Number of iterations, 8 x 1 subdomains a = y, b =
0,v=1d-2, CFL=1.d9, h= 1, log,o(Error) < 1.d -6

without preconditioner | preconditioner M1 | preconditioner M2

002 15 7 T
L} T T
002 with preconditioner M1 —
002 without preconditioner ------
B ]
i)
o
- |
e
- .. 8x8
8x8 1
i
' 1 1 1 N 4 X
0 10 20 30 40 50 60 70 20

Number of iterations (GCR)

FIGURE 2. Preconditioner M1: Decomposition in N x N
subdomains (N = 2,4, 8); rotating velocity, v = 1.d — 2, CFL =
1.d9, h= 57

with a rotating convection velocity: a = —sin (m(y — 5)) cos (n(z — 3)) and b =
cos (m(y — 3))sin (7(z — §)). Different methods have been developed to solve this
problem (see for example [17]). Here we want to observe the behavior of the precon-
ditioner on this problem. Figure 3 shows that the convergence of the 002 method
with the preconditioner M2 is nearly independent of the number of subdomains.

The convergence is better with preconditioner M2 than preconditioner M1 (figure
2).

4. Conclusion

The O02 method appears to be a very efficient method, applied to convection-
diffusion problems. With the coarse grid preconditioner, the convergence ratio is
numerically nearly independent of the number of subdomains.
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