http://dx.doi.org/10.1090/conm/218/03022

Contemporary Mathematics
Volume 218, 1998
B 0-8218-0988-1-03022-3

Non-conforming Domain Decomposition Method for Plate
and Shell Problems

Catherine Lacour

1. Introduction

The mortar element method is an optimal domain decomposition method for
the approximation of partial differential equations on non-matching grids. There
already exists applications of the mortar method to Navier-Stokes, elasticity, and
Maxwell problems. The aim of this paper is to provide an extension of the mortar
method to plates and shells problems. We first recall the Discrete Kirchhoff Trian-
gles element method (D.K.T.) to approximate the plate and shell equations. The
aim of this paper is then to explain what has to be changed in the definition of the
D.K.T. method when the triangulation is nonconforming. Numerical results will
illustrate the optimality of the mortar element method extended to shell problems
and the efficiency of the FETI solution algorithm.

2. Recalling the D.K.T. method

We recall that the Koiter equations are deduced from the Naghdi equations
(whose unknowns are the displacement of the mean surface @ = (u;,u2, w) and the
rotations 8 = (8,,3,) in the plane tangential to €2) by imposing the Kirchhoff-Love
relations, [1], given in (1), between the rotations 8 and the components of the
displacement B

(1) B, +wa+ bruy =0, where

A A
b, = a™bau

and where we denote by ay, the first fundamental form, by b, the second fun-
damental form and by c,s the third fundamental form of the mean plane. The
covariant derivatives are represented by a vertical bar and the usual derivatives by
a comma. We use Greek letters for the indices in {1,2} and Latin letters for the
indices in {1,2,3}.
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2.1. Formulation of the problem. We consider a shell which is
e clamped along 'y C T' = 00
o loaded by a body force §
e loaded by a surface force applied to the part I't = T' — Iy x] — §; §[ of its lateral
surface, where e is the thickness.

We shall consider the following problem.
Find (4, 3) € Z such that
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Yap(¥) = §(Ua{ﬁ + vma) — bagw
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Xap(V,6) = 5(%15 + Qma) - 'é(bav)\lﬂ + baUMa) + Capw

\/a = det(aaﬁ)

and N the resulting force on I'y, M = e, M A@> the resulting moment on I'; and

7 the space of the displacements/rotations which satisfy the Kirchhoff constraints
and the boundary conditions.

The Discrete Kirchhoff Triangle method consists in defining a space of
approximation ZL given by

Zh = {(Uhvéh)v Vha € V}{Cl,éha € V}flavha“*o = 07 o = 17 27
wp, € V}g;whlro =0 VT €Ty;6, clamped
(3) (Un,6,)r satisfy the discrete Kirchhoff constraints given in [1]}

such that V%, is the space of P,-Lagrange elements and V)%, the space of P;-Hermite
elements, h standing for a discretization parameter.

REMARK 1. The Kirchhoff relations are not satisfied at all the points in Q and
therefore the discrete space Zj is not included in Z. This means that we have a
non-conforming approximation of the Koiter equations.

3. The mortar element method for the D.K.T. approximation

Our purpose is to explain what has to be changed in the definition of the D.K.T.
method when the triangulation is nonconforming. We recall that in order to match
interface fields, we associate to the nonoverlapping decomposition of the domain
the skeleton of the decomposition and we choose the mortar and nonmortar sides [3].
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For the shell equation, many functions have to be matched. First, we have
the tangential displacements v, and then the transversal displacement w;,. We
have to match also the rotations 3, associated with the displacement. For the first
two components of the displacement, the matching is easy since these functions are
independent and are involved in a second order equation. Their natural space
is H'(Q) and the standard mortar method for piecewise parabolic elements is
used. We recall that it involves the space of traces Wy, of functions of V¥ on
the nonmortar sides and the subspace Wy, of Wy of functions that are linear on
the first and last (1D) element of the triangulation of this nonmortar side.

Let us state the matching across one particular non-mortar v* and denote by *
the mortar (master) side and by ~ the nonmortar (slave) side of the decomposition.
Then, for any function vp,, a = 1,2, we impose

(4) Vi, € Wi, / (Vpor = Vi bn dr = 0.
”

The space Vj,; of approximation for the global tangential components of the
displacements is thus given by

Vi = {’Uh € LQ(Q), Upjak € V,ﬁ and
(5) satisfies (4) along any non-mortar v*}.

The originality in the matching presented in this paper lies in the treatment
of the out of plane displacement and the associated rotations. We recall that the
D.K.T. condition is a relation between the displacements and the rotations, see
formula (1). The nonmortar side values are recovered from the mortar side in the
following two steps.

wt
| DK.T.
gt (1)
!
Vw™
wt T W (2)

We start from w™ given on the master side of the mortar, and then obtain §+
by using the D.K.T. condition.

Step (1)

We match 3~ and A1 by the mortar relations. These are different for the
normal and the tangential components (normal and tangential with respect to
the interface). First, we match the tangential rotation 3*~ by defining a relation
between two piecewise second order polynomials. The relation is naturally the same
as for the displacements vp,, @ = 1,2. We then impose
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(6) Vb, € Wi, / (ﬁt_ - ﬁt+)1/)h dr =0.
y

Let us turn now to the normal rotations. We note first that from the D.K.T.
conditions, the normal rotations are piecewise linear on the mortar side, [2] . Since
we want to preserve, as much as possible, the Kirchhoff conditions, we shall glue the
normal rotations as piecewise linear finite element functions. To do this, we define
Who as being the set of continuous piecewise linear functions on v* (provided with
the nonmortar triangulation) and Who as the subset of those functions of Wy that
are constant on the first and last segment of the (nonmortar) triangulation. We
then impose the following relation between the (piecewise linear) normal rotations.

(7) Yy € Who, / (8" = 8" )y dr =0.
"

Step (2)

Now that the rotations are completely glued together and are uniquely defined over
the interface from the corner values of 3~ and all nodal values of B (themselves
derived from v}, w'), we specify the relations that define w~. The first set of
constraints is to satisfy “inverse D.K.T. conditions” i.e. to match the values of w~
with the rotations §~. We impose that

¢ the tangential derivatives of w coincide with gt_ + v, at any Lagrange node
(vertex and middle point). This allows us to define a piecewise P, function on the
nonmortar elements of v* and

e the normal derivative of w coincides with 8"~ at each vertex of the triangulation
of v*. B

Since " is piecewise linear, the D.K.T. condition is automatically satisfied at
the middle node of each element . Futhermore, since 5*~ is piecewise quadratic, it
coincides with the tangential derivative of w™ not only at the nodal points but also
on the whole interface v*. Since the tangential derivative of w™ is determined, it
suffices to impose the value of w™ at one of the endpoints of v* to determine the
value of w™ entirely. We impose, with v* = [p1, p2],

(8) Vi) € Who, / (w™ —wh)Yy, dr =0
9) w™ (p1) =w (p1)
(10) w™ (p2) = w* (p2)

which can be seen as the relations that determine the nodal values of w~ that are
lacking. We insist on the fact that this construction leads to finite element functions
that satisfy the D.K.T. conditions on each interface. This allows us to define the
global space Vj,o of transversal displacements as follows.

Via = {wy, € L*(Q) Whior € V¥, and satisfy (6), (7),
(11) (9), (8) and (10)}
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FIGURE 1. Plate configuration

FIGURE 2. Deformation of the plate

4. Numerical results

Description of the problem.
We consider the plate, given in Figure 1, with the following properties.

Thickness : e =0.05m
Length : L=1m
Width : w=1m
Properties : E =10FE7 Pa and v =0.25
Boundary conditions : AB and AC clamped
Loading force : onD:F,=-10N

1. Matching results.

The deformation of the plate loaded at the point D is shown in Figure 2.

The plate is now decomposed as in Figure 3 with non matching grids on the
interfaces. The first results, given in Figures 4 and 5, show the good matching
of the transversal displacement on the section CF and of the normal derivative of
the transversal displacement.

2. Scalability results.
The discretization leads to an algebraic saddle-point problem that can be solved

by the FETI method introduced in [4] and [6]. The FETI method presented here
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FIGURE 3. Example of decomposition and mesh
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FIGURE 5. Normal derivative of the transversal displacement on CF

results in a scalable substructuring algorithm for solving this saddle point problem
iteratively.

For this plate problem approximated by the D.K.T. finite element method, we
observe that for a fixed local mesh, the number of iterations is independent of the
number of subdomains. Thus, the parallel implementation exhibits good scalability
when the right preconditioner is used [5], cf. Table 1.
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TABLE 1. Scalability results

Number of sub domains | Iterations | Residual

i 2x2) 49 7.10B-004
8 (4x2) 76 8.202B-004
16 (4x4) 77 7.835E-004
32 (8x4) 96 7.166E-004

Without preconditioner.

Number of sub domains | Iterations | Residual

i (2x2) 14 5.256E-004
8 (4x2) 16 7.566E-004
16 (4x4) 16 8.966E-004
32 (8x4) 16 9.662E-004
64 (8 x8) 16 8.662E-004

With preconditioner.

5. Conclusion

Analysis of the application of the D.K.T. method extended to nonconforming

domain decomposition to shell problem illustrate the optimality of the mortar
element method and the efficiency of the FETT solution algorithm.
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