http://dx.doi.org/10.1090/conm/218/03023

Contemporary Mathematics
Volume 218, 1998
B 0-8218-0988-1-03023-5

Solutions of Boundary Element Equations by a Flexible
Elimination Process

Choi-Hong Lai and Ke Chen

1. Introduction

Field methods such as finite difference, finite volume or finite element methods
are usually applied to solve partial differential equations. Such methods reduce
either linear partial differential equations or linearized partial differential equations
to a large sparse set of linear equations. However for certain kinds of boundary
value problems, boundary element methods have proven to be effective alternatives,
especially when dealing with exterior problems. One well-known advantage of
boundary element methods is that the dimension of the original problem is reduced
by one. The reason is because a differential problem in a domain Q@ C R™ can
be reformulated as an integral equation problem [2] over the underlying boundary
I'=0Q c R™ . A number of approximations can then be applied that may lead
to boundary element equations.

This paper has two objectives. Firstly, a brief description is given of the
sequential boundary element method followed by a possible conversion and its
requirements to a distributed algorithm. Secondly, a flexible elimination method
[10] is used with the distributed algorithm to solve the set of boundary element
equations. Such an elimination method has the advantage of not following the
usual ordering of the system of equations in a classical elimination procedure such
as Gaussian elimination. The technique greatly enhances the intrinsic parallelism of
solving dense linear systems of equations. This paper also compares the accuracy of
the flexible elimination method with the classical Gauss-Jordan elimination method
for two potential flow problems and provides some timing results of the flexible
elimination method on a network of SUN workstations using MPI as distribution
directives. The paper concludes with an extension of the algorithm to complex
systems of linear equations.

1991 Mathematics Subject Classification. Primary 65Y05; Secondary 65R20, 65F05.
Key words and phrases. Boundary Elements, Flexible Elimination, Parallel Algorithms,
Distributed Computing.

This research is supported by a London Mathematical Society Scheme 4 Grant (Ref 4222).

©1998 American Mathematical Society
311

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms

312 CHOI-HONG LAI AND KE CHEN

2. Boundary Element Methods

For certain kinds of boundary value problems such as Laplace’s equation, the
Helmholtz equation and the linear diffusion equation, boundary element methods
have proved to be effective alternatives to field methods. It is particularly true for
exterior problenis. One typical technique similar to the boundary element method
known as the punel element method [5], which is a well established practice in
aeronautical engineering industry for the design of steady and unsteady subsonic
compressible flows over airfoils and other airframe structures, is proved to be a
successful tool for engineers.

Consider the exterior Neumann problem in two dimensions using a simple layer
logarithmic potential [6]. Let 0 denote the surface of a body which is sufficiently
smooth and €2 denote the exterior of the body where a harmonic function is defined
in it. Suppose the outward normal derivative ¢’ along 09 is known, then the
solution can be written as

(1) o(p) = /d nlp—do(gds, peRuo

Suppose the source density o is distributed on 0€, then it must satisfies the integral

(2)

0

In|g; — qlo(g)ds + mo(q) = ¢'(q:), ¢; € 0
a0 On;
where n; is the outward normal at ¢;. Suppose now the boundary 01 is subdivided
into elements 0%2;, i = 1,--- ,n, the above integral can be approximated by

n a
(3 0,-/ —1In|g; — gjlds + wo; = ¢!
) ; J 20, 8”1'] J|

where 0; = o(q;) and ¢, = ¢'(g;). The discretized replacement results in the set
of dense linear equations Ag = b where ¢ = [} ---0,]" and b = [¢]---¢,]". It
involves far fewer unknowns than any field method such as finite difference or finite
volume methods. Hence a direct method such as Gaussian elimination is usually
sufficient for moderate n.

For large n, a direct method can be expensive. Our work here will be a
good starting point towards achieving speed up. Iterative methods are alternative
approaches that have achieved a varied level of success. That is, efficient iterative
solvers can be problem-dependent and preconditioners dependent; refer to [1].

2.1. Sequential Algorithm. It is clear that a sequential boundary element
method involves two computational functionals, namely, (a) the construction of
the dense matrix A and (b) the solution of Ag = b, which cannot be computed
concurrently. However, one can easily parallelize functional (a) because of the
intrinsic parallelism existing in (3). FEarly work in the parallelization of these
integrals can be found in [3, 8] and the references therein. The parallelization
essentially involves the sharing of the computation of the above integrals amongst
a number of processors within a distributed environment. Then functional (b)
may be started once functional (a) is completed. There are a large number
of literatures on parallel solvers for dense matrices. However on some parallel
machines Gauss-Jordan elimination is preferred. One common feature of these
parallel implementations is that they primarily rely on the extraction of parallelism

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms

BOUNDARY ELEMENTS AND FLEXIBLE ELIMINATION 313

to Gaussian or Gauss-Jordan elimination. The intrinsic sequential behaviour of the
two functionals has not been removed to suit modern days distributed computing.

Suppose t, and T, denote the sequential and parallel times respectively for
computing the integrals and ¢, and T, denote the sequential and parallel times
respectively for solving Ag = b, then the total sequential computing time, ¢, is
given by

(4) t =ty +ts
and the corresponding parallel computing time, t,, is given by
(5) t, =Ty +Ts.

2.2. A Distributed Algorithm. Divided and conquer type algorithms are
usually used to tackle discretized problems in distributed and/or parallel computing
environments. There are notably three major classes of divide and conquer type
of algorithms, namely, domain decomposition [7], problem partitioning [9] and
functional decomposition [4]. The first two type of algorithms concern geometric
partitioning of computational domains according to either load balancing or regional
physical /numerical behaviour and the latter concerns parallelism in computational
functionals. For the present problem, if functionals (a) and (b) could be performed
concurrently, then it is possible to achieve

(6) tqg = max{T, , Ts}

It is certainly true that ¢, > t4. Hence the key requirement of a new dense matrix
solver is that it does not rely on the natural ordering of the equations as required
by the classical Gaussian elimination. In other words, the matrix solver should
be able to eliminate any equations that have been constructed by the parallel or
distributed processing of functional (a) and are made available to the matrix solver
in a random ordering. It is important that such distributed algorithm should not
affect the accuracy of the solution compared to that obtained by means of the
classical Gaussian elimination.

Now suppose the obstacle surface is subdivided into n, sub-domains such that
n/n, is an integer for simplicity. It is also assumed that each sub-domain is mapped
to a processor within the distributed computing environment. Then a distributed
algorithm can be given as follow.

Algorithm: A distributed boundary element method.
Notation:- n (number of elements), 9Q (shape of the body),
n, (number of processors and n/n, is an integer for simplicity),
i (maps the local element numbering r to
the global element numbering),
g; (denotes the arrival ordering of the equations at sub-task 2).

sub-task 1 {
parallel-for p=1,--- ,n,
forr=1,---,n/n,

Compute row i := i, of matrix A;
Compute element [b]; of the r.h.s. vector b;
Non-blocking send of row i and element [b];;
end for
end parallel-for

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms

314 CHOI-HONG LAI AND KE CHEN

}end sub-task 1

sub-task 2 {
fori=1,---,n
Block receive row g; and [b],, from sub-task 1;
Flexible elimination step (see next Section);
end for
}end sub-task 2

end Algorithm

3. A Flexible Elimination Method

The method is based on the concept of orthogonality of vectors. Suppose
the coefficients of the ith equation of the system Ao = b, where [A];; =
aij, [bli = b and [0}, = z;, are written as the augmented vector A; =
[@i1ai2- @i — b)T, i = 1,2,---,n, then a vector V is said to be the
solution of the system provided that the last component of V is unity and that
AV =0, for all i = 1,2,---,n. Let C = {A),Ay,---,A,}. Define the
set CV = {C},Cy,---,C; | aselection of i different vectors from C} such that
C = Ct-DJ{C;} and the set RV as the subspace of dimension n + 1 — i
which consists of vectors orthogonal to the vectors in C¥, for i = 1,2,--- ,n. It
is intuitively obvious that the basis for the (n 4 1)-dimensional subspace R(®) may
be chosen as the natural basis, i.e.

(7) vO = = 1007, , VO =001}

For each 7 from 1 to n, linear combinations of a chosen vector from the basis
V(=1 and one of the remaining vectors from that basis are performed. Such linear
combinations are subject to the condition that the resulting vectors are orthogonal
to C;. Therefore for any C; € C\ C~V it is equivalent to the construction of the
basis

8 VO={ e ROV = av Y Vi) TV = o)
where 1 < k € N < n+1-—1, s(k) and m(k) € N and s(k) # m(k). Here
C© = { p} is empty. It can be easily shown that

Tys(i—1)
C; Vrr:(k)

Ty (—1)
Ci Vs(k)

(9) ap = —

and that the vector V,C(i) is orthogonal to each of the vectors in C) C C. In order

to avoid instability of the orthogonalization procedure, the condition C;" VS(Z,C_)I) #0
must be satisfied. Usually a check may be incorporated in the algorithm to ensure
the stability of the method. The dimension of the subspace R(™ is 1 and the basis
V(" is orthogonal to every vector in C®) = C. Thus the solution of the system
Ag = b is constructed [10]. It should be noted here that when C; is chosen as
A; and that if s(k) = 1 and m(k) = k + 1 then the method is equivalent to a
Gauss-Jordan elimination [10].

However the choice of s(k) and m(k) can be as flexible as it could be, provided
that the condition s(k) # m(k) is satisfied. From (8), n + 1 — ¢ pairs of vectors are

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms

BOUNDARY ELEMENTS AND FLEXIBLE ELIMINATION 315

chosen from the basis of V(1) such that no two pairs of such vectors are identical,
in order to perform the linear combinations. Note that the linear combinations are
performed by using the constant ay, as given by (9), which involves the division
of two floating point numbers. Therefore a will loose accuracy if the two floating
point numbers are of very different orders of magnitudes. One criterion which
governs the choice of s(k) and m(k) is to ensure similar order of magnitude of the
floating point numbers C;’ VrS(—k;) and C; Vs((zk_)l).
logical comparison work. It is possible to include tests in an implementation to
check that either pivoting is needed or redundant equations have occurred. It can
easily be seen that the data structure of the solution vector, i.e. Vl(n), is not affected
with various choices of s(k) and m(k). It should be mentioned here that pivoting
is equivalent to suitable choices of s(k) and m(k). Therefore the implication is that
column pivoting strategy has no effect on the data structure of the solution vector
and that the same property applies to row pivoting strategy as long as s(k) is not
the same as m(k). More details of these properties and examples can be found in
(10].

As far as distributed computing is concerned, the flexible choice of s and m
is not the key ingredient. However, if we consider the choice of C*), we realize
that there is no preference in the order of choosing vectors for C¥) from C. In
fact the order of choosing C; is not important in the present algorithm. The
only two criteria governing the choice of C; is (i) C(*) consists of a selection of
i different vectors from C and (ii) eqn (9) must be satisfied in order to achieve
stability of the algorithm. Hence it is possible to choose Ay(;) provided that the
map g : N — N isone-to-one and that 1 < g(i) <n,i=1,--- ,n where g(i) # g(j)
if ¢ # j. Such mapping of g implies the order of elimination process is not as rigid
as that in a Gauss-Jordan elimination. At any step 4, only C; € C® ¢ C and
V=1 are required in the computation. Therefore the orthogonalization procedure
can be completely separated from the knowledge of the set C \ CV). In terms of
functionals (a) and (b), the requirement for functional (b) to follow functional (a) in
a sequential processing is removed. This particular property satisfies the concurrent
processing of both functionals (a) and (b) as the necessary requirement described
in the previous Section. In terms of the sub-tasks as described in the previous
Section, sub-task 2 will be allowed to take and process any equation arriving at its
door without jeopardizing the data structure and the stability of the elimination
process.

One can also easily see that, by choosing s(k) = 1 and m(k) = k + 1, the
algorithm is particularly suitable for vector calculation and the scalar products
involved in the algorithm can be optimized to provided faster timings. We shall
investigate the accuracy of the algorithm by using a random number generator to
provide a re-ordering function g¢(7).

This involves some additional

4. Examples

For simplicity, potential flows past over obstacles at zero angle of attack are
considered. The two obstacles under consideration are (i) an ellipse described by
z? + 1’42 =1 and (ii) the NACA0012 airfoil. It is assumed that the variables in (3)
are normalized with respect to the far field velocity.

Test 1. The algorithm is first implemented as a Gauss-Jordan elimination
method by taking s(k) = 1 and m(k) = k + 1 for the solution of the boundary

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms

316 CHOI-HONG LAI AND KE CHEN

TABLE 1. Timings in seconds for solving boundary element equations.

n np=1 n,=4 n,=8
640 326 232 152.5
1024 1320 957 814.3

element equations with the natural ordering of the system. Having solved the
system of equations for o(g), it is possible to evaluate ¢(q) using (1) and hence
the tangential velocity V along the surface of the obstacle. Pressure coefficients
C, = 1 — [V|? [5, 6] along the surface of the obstacle can be evaluated. Then a
random number generator is used to provide a re-ordering function g(i) as described
above. The re-ordering function serves the same functionality as providing rows of
matrix coefficients from sub-task 1 to sub-task 2 at a different ordering from the
natural ordering according to the element numbering.

Pressure coefficients are obtained for test cases (i) and (ii) by a Gauss-Jordan
elimination method using the natural ordering of the equations and the re-ordering
of the equations. The maximum errors that have been recorded for both cases are
less than 4 decimal places.

Test 2. The algorithm is also run on a network of Sun SPARC
Classic workstations at Greenwich. MPI Standard was used to implement the
communication. Timings for the solutions of 640 and 1024 unknowns were recorded
for both of the obstacle configurations as a sequential process and distributed
processes on 4 and 8 workstations. The re-ordering function described above is
used here. Table 1 shows the timings on the network. However the speedup in this
test is not good because of the heavily used network.

5. Extension to Complex Systems of Equations

Suppose the system Ao = b is a complex system such that A = A; + iA,,
g = g, + 10y and b = b, + ib,. The complex system can be re-written as the

following real system
A —A e8] _ Q]
Ay A (2] B by

Since the ordering of the system in the flexible elimination algorithm does not
affect the solution, once the g(i)th equation is constructed and is made available to
sub-task 2, the two equations

[[A1]g) [=A2]g() [=bilg()]

[[A2]g() [Ailgqy [balgei |

can be used immediately into the construction of the new basis as described
previously in (8).

6. Conclusions

A distributed algorithm for boundary element methods is discussed. In order to
introduce concurrency to boundary element methods at the functional level, one has
to employ a flexible elimination method as described in this paper. The accuracy
of the flexible elimination method is good and its stability can be ensured easily.
Early distributive computing tests show that the method is a suitable candidate for

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms

BOUNDARY ELEMENTS AND FLEXIBLE ELIMINATION 317

solving boundary element equations in a distributive environment. The extension
to a complex system of equation is straightforward.

References

1. K. Chen, Preconditioning boundary element equations, Boundary elements: implementation
and analysis of advanced algorithms (W. Hackbusch & G. Wittum, ed.), no. 54, Vieweg, 1996.

2. D. Colton and R. Kress, Integral equation methods in scattering theory, Wiley, 1993.

3. A.J. Davies, The boundary element method on the ICL DAP, Parallel Computing 8 (1988),
348-353.

4. 1. East, Parallel processing with communicating process architecture, UCL Press Ltd, London,
1995.

5. J.L. Hess and A.M.O. Smith, Calculations of potential flow about arbitrary bodies, Progress
in Aeronautical Sciences (D. Kucheman, ed.), no. 8, 1976.

6. M.A. Jawson and G.T. Symm, Integral equation methods in potential theory and elastostatics,
Academic Press, 1977.

7. D.E. Keyes, Y. Saad, and D.G. Truhlar, Domain-based parallelism and problem decomposition
methods in computational science and engineering, SIAM, 1995.

8. C-H. Lai, A parallel panel method for the solution of fluid flow past an aerofoil, CONPARSS
(CR Jesshope and KD Reinartz, eds.), Cambridge University Press, 1989, pp. 711-718.

, A domain decomposition for viscous/inviscid coupling, Advances in Engineering

Software 26 (1995), 151-159.

, An extension of Purcell’s vector method with applications to panel element equations,

Computers Math. Applic. 33 (1997), 101-114.

10.

ScHOOL OF COMPUTING AND MATHEMATICAL SCIENCES, UNIVERSITY OF GREENWICH,
WELLINGTON STREET, WooLwICH, LoNnpON SE18 6PF, UK
E-mail address: C.H.LaiQgreenwich.ac.uk and http://cmsl.gre.ac.uk/

DEPARTMENT OF MATHEMATICAL SCIENCES, UNIVERSITY OF LIVERPOOL, PEACH STREET,
LiverpooL L69 3BX, UK

E-mail address: k.chen@liverpool.ac.uk and http://www.liv.ac.uk/maths/applied

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms

