http://dx.doi.org/10.1090/conm/218/3024

Contemporary Mathematics
Volume 218, 1998
B 0-8218-0988-1-03024-7

An Efficient FETI Implementation on Distributed Shared
Memory Machines with Independent Numbers of
Subdomains and Processors

Michel Lesoinne and Kendall Pierson

1. Introduction

Until now, many implementations of the FETI method have been designed
either as sequential codes on a single CPU, or as parallel implementations with
a One Subdomain per Processor approach. This approach has been particularly
typical of implementations on distributed memory architectures such as the IBM
SP2. In the last couple of years, several computer manufacturers have introduced
new machines with a Distributed Shared Memory (DSM) programming model —e.g.
SGI Origin 2000, or HP Exemplar. In such architectures, the physical memory is
distributed among the processors or CPU boards but any memory location can
be accessed logically by any CPU independently of where the particular memory
page being accessed has physically been allocated. As more and more machines
of this type are available with a relatively small number of processors, the interest
in implementing FETI with an independent number of subdomains and processor
has increased. We report on such an implementation of FETI and highlight the
benefits of this feature. We have found that medium size to large problems can be
solved even on a sequential machine with time and memory requirements that are
one to two order of magnitude better than a direct solver.

2. Objectives

When writing our new FETI code, the main objectives were:

o Efficient data structures for distributed shared memory
e Number of subdomains independent of the number of processors

The second requirement was the most important requirement and, when taken to
the extreme of a single processor, naturally leads to being able to run the same
code sequentially

1991 Mathematics Subject Classification. Primary 65Y05; Secondary 65N65, 65Y10.
The first author acknowledges partial support by ANSYS, Inc.

©1998 American Mathematical Society
318
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



FETI ON DISTRIBUTED SHARED MEMORY 319

3. Overview of FETI

In order to keep this paper self-contained as much as possible, we begin with
an overview of the original FETI method [6, 1, 2, 4, 5].
The problem to be solved is

(1) Ku=F

where K is an n x n symmetric positive semi-definite sparse matrix arising from
the finite element discretization of a second- or fourth-order elastostatic (or elasto-
dynamic) problem defined over a region €2, and F' is a right hand side n-long vector
representing some generalized forces. If (2 is partitioned into a set of N, discon-
nected substructures Q) the FETI method consists in replacing Eq (1) with the
equivalent system of substructure equations

)T

KGlys) = Fl) Bl ) s =1, .., N,

N
S B = 0
s=1

where K(®) and F(*) are the unassembled restrictions of K and F' to substructure
Q) Xis a vector of Lagrange multipliers introduced for enforcing the constraint
A = 0 on the substructure interface boundary F(,s), and B is a signed Boolean
matrix that describes the interconnectivity of the substructures. A more elaborate
derivation of (2) can be found in [6, 3] In general, a mesh partition may contain
Ny < N, floating substructures — that is, substructures without enough essential
boundary conditions to prevent the substructure matrices K(*) from being singular

— in which case Ny of the local Neumann problems

el A

T

(3) KOy® = & _BEI X s = 1, .., Ny

are ill-posed. To guarantee the solvability of these problems, we require that
(4) (F® —B®"\) LKer (K¥) s = 1, ..., Ny

and compute the solution of Eq. (3) as

(5) u®) = KO (FE) - BET N 4 RO )

where K()" is a generalized inverse of K(®) that needs not be explicitly computed
[4], R = Ker (K(*)) is the null space of K(*), and a(*) is a vector of six or fewer
constants. The introduction of the additional unknowns o!®) is compensated by
the additional equations resulting from (4)

(6) ROYFO —BO'\) =0 s =1, .. N;

Substituting Eq. (5) into the second of Egs. (2) and using Eq. (6) leads after some
algebraic manipulations to the following FETI interface problem

™ e o)) =14

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



320 MICHEL LESOINNE AND KENDALL PIERSON

where
N,
F; =Y BYKC BOT
s=1
G, = [B(I)R(U B(NJ)B(Nf)] :
(8) e
Ny
d = ZB(S)K(SVF(S);
s=1
= {F<1>”‘B<1> F(Ns)TB(Nf)]
(9) KO = K& i Q) is not a floating substructure
K& = a generalized inverse of K(*) if Q(*) is a floating substructure

For structural mechanics and structural dynamics problems, F; is symmetric be-
cause the substructure matrices K(*) are symmetric. The objective is to solve by
a PCG algorithm the interface problem (7) instead of the original problem (1).
The PCG algorithm is modified with a projection enforcing that the iterates Ay
satisfy (6). Defining the projector P using

(10) P=1-G/(G'G))'GY

the algorithm can be written as:

1. Initialize
N = G (G[IGI)_le
0 = d-F\
2. Iteratek k=1, 2, e lzntil convergence
i1 T k-1
w = P'r
. o - ka~l
(11) gl = p gkl
. 1T o ._oT .
C: :y:1wkk1]{yk2wk2 (CIZO)
pro= g P (=)
V= g Tk Rtk
/\k: — /\k71+Vkpk
e N O O

4. Data organization on DSM computer architecture

To be able to efficiently organize data for the FETI solver, we need to exam-
ine how the operating system will distribute memory inside the physical memory
units and how this distribution affects the cost of accessing that memory. Simple
observations of the impact of the computer architecture will give us guidelines to
organize the elements involved in the FETI solver. The single distributed shared
memory model of DSM machines simplifies the writing of parallel codes. However
programmers must be conscious that the cost of accessing memory pages is not uni-
form and depends on the actual location in hardware of a page being accessed. On
the SGI Origin 2000 machine, the operating systems distributes pages of memory
onto physical pages by a first touch rule. This means that if possible, a memory
page is allocated in the local memory of the first CPU that touches the page.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



FETI ON DISTRIBUTED SHARED MEMORY 321

Fortunately, the FETI method, because it is decomposition based, lends itself
in a natural way to a distribution of data across CPUs that guarantees that most
of the memory is always accessed by the same CPU. To achieve this, one simply
applies a distributed memory programming style on a shared memory architecture.
This means that all operations relative to a subdomain s are always executed by the
same CPU. This way, such objects as the local stiffness matrix K will be created,
factored and used for resolution of linear systems always on the same CPU.

5. Parallel programming paradigm

One can easily see that the operations involved in the FETT method are mostly
matrix and vector operations that can be performed subdomain-per-subdomain.
Such quantities as the residual vector or search direction vectors can be thought of as
global quantities made of the assembly of subvectors coming from each subdomain.
Operations on such vectors such as sum or linear combinations can be performed on
a subdomain per subdomain basis. On the other hand, coefficients such as v, and
(y are scalar values which are global to the problem. These coefficients ensue mostly
from dot products. Dot products can be performed by having the dot product of
the subparts of the vectors performed by each subdomain in parallel, and then all
the contributions summed up globally.

Such remarks have led us to write the program with a single thread executing
the main PCG loop. In that way, only one CPU allocates and computes the global
variables such as v, and (,. To perform parallel operations, this single thread
creates logical tasks to be performed by each CPU, and these tasks are distributed
to as many parallel threads as CPUs being used. Examples of tasks are the assembly
or factorization of K(*), or the update of the subpart of a vector for subdomain s.

Because the number of threads is arbitrary and independent of the number of
tasks to be performed at a given step — i.e. several tasks can be assigned to the
same thread —, independence between the number of subdomains and the number
of CPUs is trivially achieved. In the extreme case, all tasks are executed by a single
thread — the main thread — and the program can run on a sequential machine.

6. Implementation of the projector P

The application of the projector P is often referred to as the coarse problem
because it couples all subdomains together. The application of the projector to a
vector z can be seen as a three step process:

e Compute v = G'z

e Solve (G'G)a =~

e Compute y = 2z — Ga
The first and last operation can be obtained in parallel with a subdomain per
subdomain operation, since the columns of G (the trace of the rigid body modes)
are non zero only for one subdomain interface. The second operation however is a
global operation that couples all subdomains together.

Past implementations of the projector at the University of Colorado have relied
on an iterative solution of the second equation of Eqs (6). Though such an approach
was justified by the fact that these implementations were targeted at distributed
memory machines, an experimental study of the problem has revealed that on DSM
machine, it is more economical to solve this system with a direct solver. This direct
solver can only be parallelized for a low number of CPU before losing performance.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



322

MICHEL LESOINNE AND KENDALL PIERSON

FIGURE 1. Finite element models of a lens (left) and a wheel car-
rier (right)

Optical Lens Problem

g
g

Number of Iterations
2 0N
3 3

@
3

g

Solution Time (seconds)
3 H

N ¥
H H
P

~ = Soluton Time

——— Memory Usage

g

H
Memory Usage (MB)

60

58 B — 5
20 40 60 120 140 160 o o 0 w0 10 20 o 160
Number of Subdomains

80 10
Number of Subdomains

FIGURE 2. Number of iterations, solution time and memory re-
quirements vs number of subdomains (Lens problem, 1 CPU)

Consequently, it is the least parallelizable part of the FETI solver and sets an upper
limit to the performance that can be attained by adding CPUs.

7. Numerical experimentations

We have run our code on two significant example problems. For each problem
we made runs with a varying number of subdomains and have recorded both timing
of the solution and the memory required by the solver.

7.1. Lens problem. The first problem, shown in Fig. 1 on the left has 40329
nodes, 35328 brick elements and 120987 degrees of freedom. Solving this prob-
lem sequentially using a skyline solver and renumbered using RCM uses 2.2GB of
memory and 10,000 seconds of CPU time. By contrast, on the same machine, run-
ning FETIT sequentially with 128 subdomains requires 379MB of memory and 183.1
seconds of CPU. This results dramatically highlights that FETI is an excellent so-
lution method, even on sequential machines. As can be seen on the left of Fig. 2,
the number of iterations remains stable as the number of subdomains increases.
The right part of the same figure shows the variation of timings and memory usage

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



FETI ON DISTRIBUTED SHARED MEMORY 323

6.00 - = 600.00
550 /- 500.00
5.00 - .
- 400.00
4.50 1 ;
30000 — 2
4.00 [
550 ~ 200.00 |
- |
3.00 l 100.00
0.00 ‘

FIGURE 3. Solution time vs number of processors (lens problem,
128 subdomains)

50 95

“® | —— Solution Time o4

40 |~ =~ Memory Usage 93
%\ 35 92 ~
2 [
g 30 912
o &
g2 . %0 &
= z
§20 8 £
2 . 2

€ 15 .- 88

10 .- x 87

5 86

0 85

20 40 60 80 100 120

Number of Subdomains

FIGURE 4. Solution time and memory requirements vs number of
subdomains (Wheel carrier problem, 1CPU)

with the number of subdomains. It can be noticed that as the number of subdo-
mains increases, the memory required to store all the local stiffness matrices K (%)
decreases. This is mainly due to the reduction of the bandwidth of the local prob-
lems. Our experimentations show that the optimum decomposition for CPU time
has 128 subdomains. Such a number would make it impractical for most users to
use FETI with an implementation that requires one CPU per subdomain. After
determining the optimum number of subdomains, we ran the same test case with
an increasing number of processors. The resulting timings show good scalability
(Fig. 3)

7.2. Wheel carrier problem. The second problem is a wheel carrier problem
(see Fig. 1 on the right) with 67768 elements, 17541 nodes and 52623 degrees of
freedom. The skyline solver requires 576 MB of memory and 800 seconds of CPU
time. Fig. 4 shows a single CPU performance of FETI with 80 subdomains of 26.7s.
On this problem, the memory requirement beyond 40 subdomains is stable around
88MB but tends to slightly increase as the number of subdomains increases. This
is explained by the fact that as the number of subdomains increases, the size of the

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



324 MICHEL LESOINNE AND KENDALL PIERSON

interface increases and the memory required to store larger interface vectors offsets
the reduction of memory required by the local stiffness matrices K(%).

8. Conclusions

We have implemented the FETI method on Distributed Shared Memory ma-
chines. We have achieved independence of the number of subdomains with respect
to the number of CPUs. This independence has allowed us to explore the use of a
large number of CPUs for various problems. We have seen from this experimenta-
tion that using a relatively large number of subdomains (around 100) can be very
beneficial both in solution time and in memory usage. With such a high number
of subdomains, the FETI method was shown to require CPU times and memory
usage that are almost two orders of magnitude lower than those of a direct sky-
line solver. This strongly suggests that the FETI method is a viable alternative to
direct solvers on medium size to very large scale problems.

References

1. C. Farhat, A Lagrange multiplier based divide and conquer finite element algorithm, J. Comput.
Sys. Engrg. 2 (1991), 149-156.

2. C. Farhat, A saddle-point principle domain decomposition method for the solution of solid
mechanics problems, Proc. Fifth SIAM Conference on Domain Decomposition Methods for
Partial Differential Equations (D.E. Keyes, T.F. Chan, G.A. Meurant, J.S. Scroggs, and R.G.
Voigt, eds.), STAM, 1991, pp. 271-292.

3. C. Farhat, J. Mandel, and F.X. Roux, Optimal convergence properties of the FETI domain
decomposition method, Comput. Meths. Appl. Mech. Engrg. 115 (1994), 367-388.

4. C. Farhat and F.X. Roux, A method of finite element tearing and interconnecting and its
parallel solution algorithm, Internat. J. Numer. Meths. Engrg. 32 (1991), 1205-1227.

, An unconventional domain decomposition method for an efficient parallel solution of

large-scale finite element systems, SIAM J. Sc. Stat. Comput. 13 (1992), 379-396.

, Implicit parallel processing in structural mechanics, Computational Mechanics Ad-

vances 2 (1994), 1-124.

DEPARTMENT OF AEROSPACE ENGINEERING AND SCIENCES AND CENTER FOR AEROSPACE
STRUCTURES UNIVERSITY OF COLORADO AT BOULDER BOULDER, CO 80309-0429, U.S.A.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



