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1. Introduction

Recent advances in discretizations and preconditioners for solving the exterior
Helmholtz problem are combined in a single code and their benefits evaluated on
a parameterized model. Motivated by large-scale simulations, we consider iterative
parallel domain decomposition algorithms of additive Schwarz type. The precondi-
tioning action in such algorithms can be built out of nonoverlapping or overlapping
subdomain solutions with homogeneous Sommerfeld-type transmission conditions
on the artificially introduced subdomain interfaces. Generalizing the usual Dirichlet
Schwarz interface conditions, such Sommerfeld-type conditions avoid the possibil-
ity of resonant modes and thereby assure the uniqueness of the solution in each
subdomain.

The physical parameters of wavenumber and scatterer diameter and the numer-
ical parameters of outer boundary diameter, mesh spacing, subdomain diameter,
subdomain aspect ratio and orientation, subdomain overlap, subdomain solution
quality (in the preconditioner), and Krylov subspace dimension interact in vari-
ous ways in determining the overall convergence rate. Many of these interactions
are not yet understood theoretically, thus creating interest in experimental inves-
tigation. Using the linear system solvers from the Portable Extensible Toolkit for
Scientific Computation (PETSc), we begin to investigate the large parameter space
and recommend certain effective algorithmic “tunings” that we believe will be valid
for (at least) two-dimensional problems on distributed-memory parallel machines.

The external Helmholtz problem is the basic model of farfield propagation of
waves in the frequency domain. This problem is challenging due to large discretized
system sizes that arise because the computational grid must be sufficiently refined
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throughout the entire problem domain to resolve monochromatic waves, which re-
quires approximately 10-20 gridpoints per wavelength for commonly used second-
order discretizations. Moreover, the conventional farfield closure, the Sommerfeld
radiation condition, is accurate only at large distances from centrally located scat-
terers and must be replaced at the artificial outer boundary by a nonreflecting
boundary condition to obtain a computational domain of practical size. To this
end we employ a Dirichlet-to-Neumann (DtN) map on the outer boundary, which
provides an exact boundary condition at finite distances from the scatterer. The
DtN map is nonlocal but does not introduce higher order derivatives.

Although the discretized Helmholtz linear system matrix is sparse, for a large
number of equations direct methods are inadequate. Moreover, the Helmholtz op-
erator tends to be indefinite for practical values of the wavenumber and the mesh
parameter, leading to ill-conditioning. As a result conventional iterative methods
do not converge for all values of the wavenumber, or may converge very slowly. For
example, resonances can occur when conventional Schwarz-based preconditioners
are assembled from Dirichlet subdomain problems. In view of these difficulties,
this work focuses on developing a family of parallel Krylov-Schwarz algorithms for
Helmholtz problems based on subdomain problems with approximate local trans-
mission boundary conditions.

It is difficult to do justice to previous work on a century-old problem that has
been revisited with vigor by specialists in diverse application areas in recent years.
However, we select a few references that have been of inspirational value to our
own work. Keller & Givoli [13] and Harari & Hughes [10] employed the global
Dirichlet-to-Neumann map (a pseudo-differential operator) as a non-reflecting BC
for the truncated domain (circle or sphere) and also experimented with truncating
the complexity implied by the full DtN map. Després in his doctoral disserta-
tion [7] pioneered domain decomposition for Helmholtz problems with first-order
transmission conditions on nonoverlapping interfaces between subdomains, proving
convergence to a unique solution. Ghanemi [8] combined nonlocal transmission con-
ditions with Després-style iteration. She also obtained a better rate of convergence
through under-relaxation of the nonoverlapping interface conditions. Douglas &
Meade [12] advocated second-order local transmission conditions for both subdo-
main interfaces and the outer nonreflecting boundary condition and employed un-
derrelaxed iterations. Our colleagues in domain-decomposed Helmholtz research,
Cai, Casarin, Elliott & Widlund [3] introduced Schwarz-style overlapping, used
first-order transmission conditions on the overlapped interfaces, calling attention
to the wavelap parameter, which measures the number of wavelengths in the over-
lap region. They have also noted the importance of a (relatively fine) coarse grid
component in the Schwarz preconditioner to overcome the elliptic ill conditioning
that arises asymptotically for small mesh spacing.

2. Mathematical Formulation

The scalar Helmholtz equation,
(1) ~Vu — k*u =0,
is derived by assuming a time-harmonic variation in the solution of the second-
order, constant-coefficient wave equation. A discussion of the hierarchy of models

that reduce in their purest form to (1) is given in [1]. The parameter k is the
reduced wavenumber, i.e. 27/), where A is the wavelength. In the general case

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



ADDITIVE SCHWARZ METHODS FOR HELMHOLTZ PROBLEMS 327

anisotropy and spatially varying coefficients may be present, although in this work
we restrict attention to a homogeneous isotropic problem.

We explicitly consider only the external Helmholtz problem, in which the per-
turbation field v is driven by a boundary condition inhomogeneity on a nearfield
boundary I, subdivided into Dirichlet, I'p, and Neumann, I'y, segments, one of
which may be trivial. Scatterer boundary conditions of sufficient generality are

(2) u=gponlp and Ou/dv=gn onTly.

The Sommerfeld radiation condition,

lim (@172 (a_u + iku) =0,
T—00 81‘

may be regarded as an expression of causality for the wave equation, in that there
can be no incoming waves at infinity. Thus this condition acts as a filter that selects
only the outgoing waves. (The Sommerfeld sign convention depends upon the sign
convention of the exponent in the time-harmonic factor of the wave equation.)

The Dirichlet-to-Neumann Map. In finite computations the Sommerfeld
boundary condition must be applied at finite distance. For B a circle (or a sphere
in 3D), an integro-differential operator may be derived that maps the values of u
on the artificial exterior boundary, B, to the normal derivative of u on B [9]. In
two-dimensional problems this leads to an infinite series involving Hankel functions,
which may be differentiated in the radial direction and evaluated at r = R to yield

on B:
3 24R0) = (Mu)(R,0) = Ei/fl’(‘i)/—(@ / 7 cosn(6 — 0'Yu(R,6)d6
ov T ’ T HP (kR) Jo , '

This expression defines the Dirichlet-to-Neumann map, M, where the infinite sum
may be truncated to a finite approximation of N > kR terms [10].

Finite Element Discretization. We use a Galerkin finite element formulation
with isoparametric four-noded quadrilateral elements to discretize the problem
specified by (1), (2), and (3) and thereby form a linear system,

(4) Au = b.

Details about this system, as well as elementary properties of its pseudospectrum,
are given in [14]. The Sommerfeld boundary condition has the effect of pushing
the portion of the real spectrum that is close to (or at) zero in the Dirichlet case
away from the origin, in the imaginary direction.

3. Schwarz-based Solution Algorithms

Brought into prominence in the current era of cache-based architectures, ad-
ditive Schwarz methods have become the “workhorses” of parallel preconditioners
for elliptically dominated partial differential equations in the last decade, and have
recently been applied to Helmholtz problems in [3]. Although a variety of Schwarz-
based techniques have been considered for Helmholtz problems by ourselves and
others, this chapter focuses on accelerated overlapping iterative methods for the
solution of the discrete equations (4).

Closely related to the overlapping Krylov-Schwarz method presented herein is a
nonoverlapping stationary iterative scheme of Resiga and Atassi [16] for solving (1)
independently in subdomains. This approach, which follows the work of Després
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[7] and Ghanemi [8], uses under-relaxed impedance-type boundary conditions on
subdomain interfaces and the DtN map on the exterior boundary, and features
concurrent update of all subdomains for parallelism. Details of the scheme are
presented in [14], where it is compared with the method featured herein.

We investigate an additive Schwarz preconditioner based on overlapping subdo-
mains, which is accelerated by a Krylov method, such as a complex-valued version
of GMRES [15]. An overlapping decomposition is defined by splitting the compu-
tational domain 2 into nonoverlapping subdomains §2;, with boundaries 09;, and
extending each except where cut off by I' and B to subdomains 2, and interfaces
0. A (Boolean) restriction operator R; extracts those elements of the global
vector that are local to extended subdomain i, and a prolongation operator R}
(without the ) prolongs elements local to the nonextended subdomain i back to
the global vector, by extension with zeros. Let A; u; denote the action of solving
in each extended subdomain,

E»L"U,i = fi in Q;,
0 on O — 0N
g; on 0%, NN

Then a Schwarz projection M; is defined by M; = R’ A7'R/A, and a Schwarz-
preconditioned operator is then defined through M = 3. M;. The system (4) is
replaced with Mu = 3", RF A7 'Rlb. We iterate on this system with a Krylov
method until convergence. This particular combination of extended restriction and
unextended prolongation operators is designated “Restricted Additive Schwarz”
(RAS) [4] and has been found by us and by others to be superior to standard Addi-
tive Schwarz, in which the prolongation is carried out to the extended subdomains.
We have described the left-preconditioned form of RAS above. In practice, when
comparing preconditioners as in this paper, we employ right-preconditioning, so
that the residual norms available as a by-product in GMRES are not scaled by the
preconditioner.

Each interior point of the original domain remains an interior point of at least
one subdomain, and a standard PDE discretization is applied there. The extended
interior subdomain interfaces are handled with Sommerfeld-type boundary condi-
tions in the preconditioner only. Except for the use of homogeneous Sommerfeld-
type boundary conditions, this method falls under the indefinite Schwarz theory of
Cai & Widlund [5, 6].

Biui =

4. A Model Helmholtz Problem

We use a model problem with a known exact solution to study the trunca-
tion error of this algorithm, along with the algebraic convergence rate. This model
problem was employed by Givoli and Keller [9] for their demonstration of the ad-
vantages of the DtN map. The geometry and notation are defined in Figure 1. The
eccentricity of the bounding circles spoils the application on B of simple boundary
conditions based on normal incidence.

The explicit analytical solution u* permits tabulation of the pointwise relative
error in the numerical solution u!" at point i after iteration m as follows:

ol = (@)
(5) @ T @)
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e Inner boundary, I':
circle centered at S = (—3,0)

2 with radius R; =1
o e Outer boundary, B:
R Vxl circle centered at O = (0,0)
r 2 with radius Ry = 2
Q, e Neumann BC on I' from monopole at S

¢ Dirichlet-to-Neumann map on B

FIGURE 1. Eccentric annulus model problem domain.

relax=0.3

relax=0.3

FIGURE 2. Relative error distribution of converged solution with
Sommerfeld (left) and the DtN map (right) exterior boundary con-
ditions (nonoverlapping stationary iterative method, k = 4).

On the basis of numerical experiments that are discussed in [14], we have deter-
mined the truncation error “floor” beneath which we need not obtain algebraic
convergence of (4). We have also compared a variety of schemes for attaining
that level of error. Figure 2 shows a typical plot of the relative error (5) using
a nonoverlapping stationary scheme for a two-subdomain case with k = 4. This
picture emphasizes the well known advantage of a perfectly nonreflecting DtN map
over a Sommerfeld boundary condition.

5. Numerical Results

For our numerical simulations of the Helmholtz problem, we employ the Port-
able, Extensible Toolkit for Scientific Computing (PETSc) [2], a library that at-
tempts to handle through a uniform interface, in a highly efficient way, the low-level
details of the distributed memory hierarchy. One feature that distinguishes it from
other freely available libraries of iterative methods is the capability of solving sys-
tems defined over the complex numbers. Also, PETSc’s preconditioners make it
routine to vary the number of subdomains in each physical dimension into which
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TABLE 1. Iteration counts and parallel execution times (in sec-
onds) for different aspect ratio subdomains and different overlaps,
65 x 256 grid, 32 processors.

Subdomain Shape | Overlap h/2 | Overlap 3h/2 | Overlap 5h/2 | Overlap 9h/2
Procs  Subgnd Its Time | Its Time Its Time Its Time

k=6.5
1x32 8:1 131 1.35s | 125 1.38s | 125 1.46 124 1.77s
2x16 2:1 137 1.54s | 128  1.42s | 128 1.89s | 126 1.45s

4x8 1:2 174 1.96s | 145 1.54s | 138 1.77s |129 1.79s
8x4 1:8 211 2.98s [ 169 3.54s | 153  2.44s | 134  2.57s
k=13.0

1x32 8:1 159 1.92s | 152 1.97s | 150 1.99s | 146 2.13s
2x16 2:1 182 1.88s | 157 1.76s | 150 1.83s | 147 1.92s
4x8 1:2 195 1.92s | 164 1.73s | 157 2.08s | 153  2.27s
8x4 1:8 224 2.84s {190 2.55s | 176  2.73s | 158  3.01ls

the problem will be partitioned, the amount of overlap between these subdomains,
and the quality of the solution process employed on each block in the preconditioner.

5.1. Comparison of Subdomain Shape and Overlap. Like convection
problems, Helmholtz problems possess “preferred” directions in that there are dom-
inant directions of wave propagation. Unlike convection problems, these directions
are not manifest in the interior equations, which are locally rotationally invariant,
but enter through the boundary conditions. It is therefore of interest to study the
effect of subdomain size and shape on decomposed preconditioners for Helmholtz
problems. We seek to answer two questions initially for a range of wavenumbers k:
how does the orientation of the cuts interact with the orientation of the waves, and
how much does overlap help to “pave over” the cuts?

Our implementation permits any number of radial and circumferential cuts,
provided that all subdomains consist of a rectangular subset of the radial and
circumferential indices. For the purpose of playing with aspect ratio in several
increments over a large ratio, we select power-of-two size discretizations. Thus,
we take 64 mesh cells in the radial direction and 256 in the circumferential. To
satisfy the conservative A\/h > 20 in all directions throughout the domain, where
A = 2m/k, we consider k = 6.5. We compare this with £k = 13.0, in which the
waves are resolved with only 10 points per wavelength in the worst-resolved part
of the domain (near (x,y) = (2,0)). The action of A; ' is approximated on each
subdomain by application of ILU(1), with overlap as tabulated across the column
sets, accelerated by restarted GMRES. Wall-clock execution times are measured on
32 nodes of an IBM SP with 120MHz quad-issue Power2 nodes with a 10~ relative
residual tolerance.

We readily observe in Table 1 that cuts along constant angle (which are aligned
with the dominant radial direction of wave propagation) are preferable over cuts
along constant radius. Convergence is very much faster with few “bad” cuts than it
is with many “bad” cuts. Overlap is effective in reducing the number of iterations
by about 50% in the case of many “bad” cuts, but exhibits a relatively rapid
law of diminishing returns in all orientations. Since the cost per iteration rises
approximately linearly in the overlap and the convergence rate benefit saturates, the
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TABLE 2. Scalability for fixed global problem size, 129 x 512 grid,

k=13
Processors | Iterations | Time (Sec) | Speedup | % Efficiency
1 221 163.01 - —
2 222 81.06 2.0 100
4 224 37.36 4.4 100
8 228 19.49 8.4 100
16 229 10.85 15.0 93
32 230 6.37 25.6 80

experimentally observed optimal overlaps (corresponding to the italicized entries in
the table) are all relatively modest.

5.2. Parallel Scalability. There are several measures of parallel scalability.
Two of the most important are fixed-size scalability, in which more processors are
employed in solving a problem of constant size, and fixed-memory-per-node (or
“Gustafson”) scalability, in which a problem’s dimension and processor granularity
are scaled in proportion. For the same algorithm, we employ a finer mesh of 128
cells radially and 512 angularly and we increase the wavenumber to k = 13 for
this fixed-size problem. As shown in Table 2, we achieve overall efficiencies of 80%
or better as the number of processors increases from 1 to 32. Convergence rate
suffers remarkably mildly as preconditioner granularity increases. In this fixed-size
problem, the algebraic dimension of the dense matrix block corresponding to the
DtN map is fixed and is equally apportioned among the processors in a sectorial
decomposition.

In the Gustafson scaling, in which the overall algebraic dimension of the prob-
lem grows in proportion to the number of processors, the communication involving
all exterior boundary processors that is needed to enforce the DtN map implicitly
has a deleterious effect on the scaled performance. We are presently addressing this
problem by means of a sparsified approximation to the DtN map. The resulting
operator is still much more accurate than a purely local Sommerfeld condition, but
less crippling than the full global operator. For present purposes, we present the
Gustafson scaling for a problem in which the DtN map is not included in the system
matrix in (4), but split off to an outer iteration.

Results are shown in Table 3, over a range of three bi-dimensional doublings.
Over one million grid points are employed in the finest case. As the problem is
refined, we preserve the distribution of the spectrum by scaling with hk constant
(fixed number of mesh points per wavelength). It could be argued that to keep
the dominating phase truncation error term uniform, we should scale with hk3/2
constant [11]. This would make k grow less rapidly in Table 3.

We obtain a reasonable per iteration efficiency, but we suffer a convergence rate
degradation that is Poisson-like: iteration count grows as v/ P, where P = number
of subdomains. To remedy this problem, a (relatively fine) coarse grid [3] should
be used in the Schwarz preconditioner.

6. Conclusions and Future Work

We have presented a parallel algorithm of Additive Schwarz type with Som-
merfeld interface conditions for the wave Helmholtz problem. The benefits of DtN
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TABLE 3. Scalability for fixed local problem size using an explicit
implementation of the DtN map

Number of Global Time per Iteration
Processors Dimension k | Iters | Seconds | % Increase
4 129 x 512 13 | 250 077 —

16 257 x 1024 | 26 | 479 .084 9
64 513 x 2048 | 52 | 906 102 32

vs. Sommerfeld conditions on the exterior boundary are illustrated by comparison
with analytical solution on model problem. Parallel scalability has been evaluated
and is customarily good for an additive Schwarz method for a fixed-size problem.
Relatively small overlaps are sufficient. The implicit DtN map, though highly accu-
rate, intrinsically requires communication among all exterior boundary processors
and hence is nonscalable, so sparsifications are under investigation. Without a
global coarse grid, algorithmic scalability deteriorates in a Poisson-like manner as
the mesh and processor granularity are refined.

This work is encouraging, but not definitive for parallel Helmholtz solvers. We
are interested in better preconditioners to address the underlying elliptic conver-
gence problems, and we are interested in higher-order discretizations to increase the
computational work per grid point and reduce memory requirements for the same
level of accuracy. Future work will include extensions to three-dimensional prob-
lems on less smooth domains, the addition of coarse grid to preconditioner, and the
embedding of a Helmholtz solver in a multiphysics (Euler/Helmholtz) application
in aeroacoustics.
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