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1. Introduction

A non-overlapping domain decomposition method with Robin-type transmis-
sion conditions which is known for scalar advection-diffusion-reaction problems
[2],[5] is generalized to cover the Oseen equations. The presented method, which is
later referred to as DDM, is an additive iteration-by-subdomains algorithm. Hence
parallelism is given in a very natural way. The formulation is based on the con-
tinuous level to study the DDM without dealing with a special discretization. A
convergence result for the “continuous” algorithm is presented. To treat incom-
pressible Navier-Stokes problems, the

A parallel implementation based on a finite element discretization has been
done. Numerical results indicating linear convergence with a rate independent of
the mesh size are presented for both the (linear) Oseen equations and the (non-
linear) Navier-Stokes equations.

We denote by L%(f2) the space of square integrable functions with norm || -{|o.o
and inner product (-,-)o. H*(Q) denotes the usual Sobolev space with norm | -||5.q.
For I' C 09 we write (-,-)r for the inner product in L?(T) (or, if needed, for
the duality product between HO%O(I‘) and H&)%(I‘)). The space HO%O(F) consists of
functions u € H?(T') with d~2u € L%(T") where d(z) = dist(z,dI) [3, Chap 1.,
Sec. 11.4]. We explain the DDM for the Oseen equations in Section 2 and look into
its analysis in Section 3. Then we explain how to discretize the method (Section 4)

and apply it to the Navier-Stokes equations (Section 5). Numerical results are
presented in Section 6.

2. Definition of the DDM for the Oseen equations

Let Q C R? be a bounded domain with Lipschitz, piecewise C?-boundary 0.
We consider the following boundary value problem for the Oseen equations
—vAu+ Vp+(b-V)u+ cu f € (L*(Q)?
V- -u 0 €L
u = g €(H2(00p))?
h € (L*(0Qr))?

Il

(1)

Vg—g—pn+nu

I
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FIGURE 1.

T O 92 op
Qg

where 0Q = 0Qp U R, 0Np NN =0, and v > 0, b € (H}(N))? with V- b €
L>(Q), c € L*(Q), n € L=(Ng). n is the outer normal on 9N. If INg = 0 we
also require [,, g -n = 0. Then if ¢ — %V-bz 0 and n + %b-n > no = const > 0
problem (1) has a unique solution which belongs to (H!(0))?x L(Q) if u(8Q2r) > 0,
and to (H'(Q))? x L§(Q) with L§(Q) = {f € L*(Q)| [,, fdz = 0} otherwise.

The reason why we consider a mixed boundary value problem will become clear
in the next section. Here we allow the additional term cu within the momentum
equation which occurs if a simultaneous linearization and semi-discretization in
time of the non-stationary Navier-Stokes equations is performed.

A heuristical approach to non-overlapping domain decomposition methods for
this type of problems is as follows. We divide €2 into two subdomains 2, k = 1,2
also having a Lipschitz, piecewise C2-boundary. The artificial boundary 9§, N9,
is denoted by I' (Figure 1). For simplicity we assume 9Qx G 9y N 0N

Then the original boundary value problem is equivalent to the following split
formulation (n; always denotes the outer normal of ;)

—vAu +Vp +(b-Vuy+cuy, = f € (L*())?

2) Vou, = 0 € Lz(lﬂl)
u = g €(H2(8)|sapnan,)?
V% -pimi+nu; = h € (L2(8QR))2
VAU +Vpy+ (b-Vug +cuy = f € (L%(2))?
(3) Vou = 0 € LZ(QQ)
up g € (H=(0)loa,no0.)°
together with the continuity requirements on I

(4) u = uy in (H?(I))?,

ou ou . 1
(5) vatopim = —vgZapmyin(He' (D)
n2

8711

These two continuity conditions can be used to construct a non-overlapping domain
decomposition method for this problem, which can be considered as an iterative
decoupling of the split formulation. For example using (4) iteratively to calculate
solutions on Q, i.e. u¥ = ug_l, and (5) for 22 we would get a Dirichlet-Neumann-
algorithm [7].

We use however a linear combination of both conditions for all subdomains, i.e.
to get a new solution on §2; within the iteration, we impose

k k—1
Z:Z —ping 4+ Nuk = 1/8;7]” —p¥ '+ Auf Tt on 99, N oYy

6) v
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Such an approach does not require a red-black partition which is often needed for
DN-algorithms. Furthermore it is known for the related method for advection-
diffusion-reaction problems that the behaviour of the solution can be modelled
“adaptively” if ); is chosen as an appropriate function [2],[5],[1],[6].

More precisely we use a restricted class of weighting factors A; as given below,
but we allow some kind of relaxation of the interface condition (6).

The algorithm. We now consider a non-overlapping partition into N subdo-
mains 2 = UfV:I Qi, U NQ; =0 Vi # j with each Q; having the same boundary
regularity as Q. We denote I'; = 092; \ 02 and Fij = 0Q; N 09Y;.

Furthermore we use the following notations:

“Interface operator” i B(u,p) = V(,?—,,’{i —pn; + (—1b-n; + pi)u
initial interface condition : ®;q
“relaxation parameter” . 0e(0,1]

Instead of A; we use —%b -n; + p; with p; to be chosen, because the necessary
restrictions are easier formulated for p;.

Now the domain decomposition algorithm for the Oseen problem (1) reads:
For k € N solve for all subdomains Q; (i=1,...,N) in parallel:

—vAu; + Vp; + (b- V)u, + cu; f
(7) AV u; = 0

with the given boundary conditions on 0Q;NOSY together with the interface condition

ok Ry 6@i(u§_1,pf_l)+(1~0)<I>i(uf'l,pf”1) k>1
® e -{ o -

on Fij.

3. Convergence Analysis

Before formulating the convergence result for the algorithm above we start with
its well-posedness.

LEMMA 1. In addition to the rcgularity of the data prescribed in Section 2 we
assume ¢ — %V -b>0,n+ %b -m > 19 = const > 0, and for all subdomains

1. p; € L>=(T;) with p; > p? = const > 0
2. (I’i,O € Lz(Fi)
3.¢c—1V.b>ci=const >0 or p(dNaQ) > 0.

Then the domain decomposition algorithm is well-defined, i.e. all local boundary
value problems have for all k a unique solution in (H'(£;))? x L?(€2;). Furthermore
we have

(9) ®;(ul, pF) € L*(Ty;) Vk.

We emphasize that the local pressure solution p¥ is unique in L?(T;) for all k.
Now we denote by II; the L2-projection onto the space L2(£;), more precisely

1
(10) I, : L2(9y) — L3(Q; qp—»q————/ dzx.
(82 o(f%:) ©(82:) sziq
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THEOREM 2. Let the solution (u,p) of (1) be reqular enough to have 1/56# -
pni € (L*(Ti;))? for alli,j. If p; = p; a.e. then we have under the assumptions of

Lemma 1 for all 6 € (0,1]

uf —willio, — 0,
|ITL; (pi‘ —pi) oo, — 0

for k — oo, where (u;,p;) is the restriction of (u,p) to ;.
Furthermore, if u(02g) > 0, i.e. a mized boundary value problem is considered, we
have for all 6 € (0,1]

Ip* = plloo, — 0
for k — oco.

Remarks

e If ¢(z) — 5V - b(z) > C > 0 then arbitrary subdomain partitions satisfying
the regularity requirements are allowed. Especially internal cross-points can
be treated. For C' = 0 such partitions are not covered by the theorem, but
nevertheless they work in numerical computations.

e The Stokes problem is covered.

o All results remain valid if different p; for every velocity component are used.

e For a Dirichlet problem the pressure convergence is local: Only the locally
normalized pressure will converge. I.e. we have pressure convergence up to
a constant which can differ for different subdomains and iteration steps.

e Since the theorem yields no information about the convergence speed, we
have no theoretical indication how to construct a “good” p;. A heuristic ap-
proach to a “good” p; for advection-diffusion-reaction equations is contained
in [6]. For the Oseen equations this question is still open.

To prove the convergence for the velocity variable a key step is the relation
. 2 ) 2
Wbl + fr, g (®slulf,pf) = 2p0uf)” = [ o5 (®iuf,pf))
with
1 1
|||u|||f = V|U|%,Qi + [l(c = %V : b)“‘“%,m + [I(n + %V : b)"’u”g,aQRnam

which uses the L?-regularity of the interface data. This part is established similar to
the convergence of the related algorithm for advection-diffusion-reaction problems.
([1] contains that proof for 8 = 1.)

The local pressure convergence comes from a modified a priori estimate which
is based on the continuous version of the Babuska-Brezzi-condition. Global conver-
gence of p in the case u(02g) > 0 is based on the transmission of the local pressure
mean values across interfaces. The full proof is given in [6].

4. The discrete algorithm

Since finite elements are favoured as discretization method, weak formulations
of the subdomain problems should be considered. In the case of homogeneous
Dirichlet boundary conditions on 992 and ¢ = 0 the local Oseen problems read in
weak formulation:
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Within step k find (u¥,pF) € V; x Q; = {v € (H'(Q))?*|v = 00ndQ N O} X

1
ai(b; uf, ’U) - bz(pic’ 'U) + bi(qa ’U,f) + <(__b ‘n; + Pi)“i‘ca U)n

k-1
(11) = (f,v)a, + Y (A5 o),
J#i
where
a;(b;u,v) = v(Vu,Vv)g, +(b- Vu+ cu,v)q,

bi(qav) = (p,V : U)Qi
Ak, 09, (uf, pk) + (1 — 0)®i(uf, pk).

The discretization is performed by choosing finite dimensional subspaces V;*, Q" of
V;, Q; which consist of piecewise polynomial functions on the restriction of a global
triangulation of € to ;.

The evaluation of <I>i( 1,pf ) resp. ®;(u f 1,pf'1
of the following formula

(12) AK = 0(pi + pj)uf — OAST + (1 - 0)A

which does not use derivatives of the finite element solutions. Again the discrete
algorithm starts with an initial guess ®; o for the interface condition. Hence a good
initial guess can reduce the number of iterations until convergence.

) can be avoided by means

5. Application to the Navier-Stokes equations

The stationary Navier-Stokes equations as a non-linear problem of the form

Alua = f
can be solved by a defect correction method
(13) Alam @™ = am ) = wn {f = A" @™}
or equivalently
(14) A (@) = wnf + (1 - wr) [ 1)@

with some damping factor w,, > 0. The idea is to solve the linear(ized) Oseen
problem occuring within this iterative process using the domain decomposition
algorithm as 1nner cycle Then the local subproblems are as in (11) with u¥,p*
replaced by u." ,pi * and b by the velocity solution from the previous linearization
step. If the formulation (14) is used, an appropriate initial interface condition for
the domain decomposition within step m is the last calculated A from step m — 1.
Hence results of step m—1 are re-used and it is not necessary to achleve convergence
of the domain decomposition algorithm within every linearization step.

6. Numerical examples

As remarked in Section 2 an analogous method turned out to be very efficient
for advection-diffusion-reaction problems [1],[6]. Hence for the numerical examples
below we used the straightforward extension of the interface function proposed in

(1]
(15) pi =1/ (b-n)* + v
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FIGURE 2. Convergence history for Example 1.

A is a strictly positive function and could be chosen seperately for each velocity
component.

Within our calculations we use continuous piecewise linear finite elements for
the velocity as well as for the pressure. So we add to (11) residual terms in order to
satisfy a modified Babuska-Brezzi-condition and to get a stable discretization (see
[4] for details).

Numerical experiments showed that a relaxation parameter 6 < 1 gives global
pressure convergence for the Dirichlet problem, too (cf. Theorem 2). But for the
type of problems considered below there is no acceleration for smaller 8. So we
chose 0 =1 for all test cases.

Example 1. Linearized Navier-Stokes flow (Oseen flow):

We consider the Poiseuille flow in a 2d channel, where we use the quadratic profile
as known velocity field. At the outflow part we impose a homogeneous Neumann
boundary condition and prescribe the velocities elsewhere. The computational do-
main [0,1] x [0,1/4] is divided into 4 subdomains arranged in a row. The exact
solution is given by (u,v,p) = (64y(1/4 — y),0, —128vz) with v = 1073. We show
in Figure 2 the convergence history of the discrete L2-errors versus the iteration
number of the DDM for different mesh sizes. (Due to their interface discontinuities
the dd-solutions do not belong to the space of continuous finite element functions
which is needed to calculate residuals directly. That is why we here only consider
the error. An alternative is under development.)

The results indicate that the DDM converges almost linearly until a certain
error level is achieved which corresponds to the mesh size. The rate of convergence
seems to be independent of the mesh size. In comparison to the related algorithm
for scalar equations [6] the performance is worse and the choice of A is more critical.
Here it is chosen as A = 5/v.

So far no mechanism of global data transport (like a coarse grid) is incorpo-
rated in the algorithm; hence it cannot be scalable. Table 1 shows the dependence
of the number of subdomains for the finest grid used for this example. Neither load-
balancing nor inexact subdomain solving has been used to obtain these results. As
expected the number of iterations increases with the number of subdomains. Never-
theless, the computing time decreases and this suggests that this algorithm together
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TABLE 1. Iteration numbers and computing time needed on the
finest mesh (h = 1/256) to achieve for Example 1. an u-error
smaller than 5- 1075,

subdomain | number of CPU-time [s]
partition | dd-iterations | (fastest and slowest subdomain)
2x1 17 1260, 1630
4x1 54 1000, 1410
4x2 88 540, 1110

FIGURE 3. Subdomain partition for Example 2.
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FiGURE 4. Convergence history for Example 2.

with a coarse grid solver can be very efficient for larger numbers of subdomains.

Example 2. Stationary Navier-Stokes flow around a cylinder:

We consider the stationary flow in a 2d-channel with an obstacle. We have a qua-
dratic profile at the inflow, no-slip conditions at the walls and a homogeneous Neu-
mann boundary condition at the outflow. The viscosity is v = 10~3 and we choose
A =1/vin (15). The computational domain has been divided into 8 subdomains
as shown in Figure 3.

In Figure 4 we show the convergence history of the discrete L2-errors versus
the number of linearization steps for different mesh sizes. Within each step we
performed 10 steps of the domain decomposition algorithm. To calculate the errors
we used a reference solution obtained by solving the global boundary value problem
on the same mesh up to the level of the truncation error.
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The graphs show the linear convergence of the outer iteration (linearization)
with a rate independent of the mesh size. A direct computation without the DDM
needs between 13 and 16 linearization steps. Hence with 10 dd steps within every
linearization step we get nearly the same accuracy with roughly the same number
of steps. In fact, the parallel calculation is cheaper with respect to computing time.
So the DDM works quite well as kernel of a Navier-Stokes solver.

7. Summary

We described a non-overlapping domain decomposition algorithm for the Oseen
(linearized Navier-Stokes) equations and proved its convergence on the continuous
level. A discretized variant was proposed and applied to the Navier-Stokes prob-
lem. A finite element implementation which has not been fully optimized yielded
reasonable results for the linear and non-linear problem. The method has also been
applied to non-isothermal flow problems with promising results. Further investiga-
tions of both theory and implementation are under development.
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