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1. Introduction

Inverse heat conduction problems (IHCPs) appear in many important scientific
and technological fields. Hence analysis, design, implementation and testing of
inverse algorithms are also of great scientific and technological interest. The
numerical simulation of 2-D and 3-D inverse (or even direct) problems involves a
considerable amount of computation. Therefore, the investigation and exploitation
of parallel properties of such algorithms are equally becoming very important
[9, 2]. Domain decomposition (DD) methods are widely used to solve large scale
engineering problems and to exploit their inherent ability for the solution of such
problems.

An area of particular interest in IHCPs is the cutting of sheet material such
as metal. An accurate simulation of the temperature distribution of the metal,
subject to cutting, is vital in order to lengthen the life time of the cutting tool and
to guarantee the quality of the cutting. In addition, the real-time simulation of such
temperature distributions is of industrial interest. For example, it is important to
regulate the cutter speed and coolant application in order to keep the temperature
(especially at the cutter points) below a threshold. When the temperature rises
above the threshold this will cause deformation of the metal or it may become
fatigued. In reality, the accurate measurement of temperature at the cutter points
is not possible. Therefore, a direct problem cannot be formulated. Inverse methods
can be used to retrieve the temperature at these points. It has been shown that
accurate estimates can be obtained using such methods [1]. THCPs, such as the
metal cutting problem described above, are more difficult to solve analytically than
direct problems [1]. Therefore, various approximation methods have been developed
to solve such problems. These include graphical[10], polynomial [5], Laplace
transform [7], dynamic programming [11], finite difference [3], finite elements [6]
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and finite volume. Here we will use a finite volume based method. The main
objective of this work is to study DD methods to solve IHCPs and to explore
algorithms which are suitable for distributed/parallel computing environments.

This paper is organised as follows. First, a description of the mathematical
model for the dimensionless 2D non-linear metal cutting problem is given. Second,
the description of the problem partitioning is given. Different numerical schemes are
used in different sub-domains in order to solve different sub-problems. Numerical
results are shown for a metal cutting application. Third, the exploitation of the
parallel properties of the numerical schemes are explained. The resulting parallel
implementation uses MPI (Message Passing Interface) directives [4] and is suitable
for network-cluster (distributed) computing as well as for traditional tightly-coupled
multi-processor systems. Finally, some conclusions are drawn.

2. Dimensionless 2D Non-linear Metal Cutting Problems

The metal cutting problem considered here is a 2D thin sheet of metal defined
in the domain D = {(z,y) : 0 <z < 1 and 0 < y < 1}. The material property
is assumed to be homogeneous across the domain of interest and the following
assumptions are made for an idealised cutting :- (1) the application of a cutting tool
at the cutter points is equivalent to the application of a source at these points, (2) no
phase changes occur during cutting and (3) the thickness of the cutter is negligible.
The cutting is considered to be applied along the y-axis at * = x.. Assumption
(1) introduces an unknown source of strength Q.(y,t) at z. and together with
assumption (2), the cutting problem can be described by the dimensionless 2D
non-linear, unsteady, parabolic, heat conduction equation,

M) G = kg + kw5 + Q-2 €D,

subject to initial condition u(x,y,0) = U;(x,y), boundary conditions u(0,y,t) =
Bo(y,t), u(l,y,t) = Bi(y,t), u(z,0,t) = Cy(x,t) and u(z,1,t) = C1(x,t). Here
u(z,y,t) is the temperature distribution, k(u) is the conductivity of the metal,
Q.(y,t) is the unknown source being applied at © = z., §(x — z.) is the Dirac delta
function and U;, By, B;, Co and C; are known functions.

Assumption (3) suggests the continuity of the function %% at = x., which in

2+
turn suggests that f;* %%dm = 0. Here = denotes a spatial point just to the left

of z. and x} denotes a spatial point just to the right of z.. Hence the equivalent
source strength can be retrieved by integrating (1) from = = z_ to z = = to give

® Mgl — MG+ g Gl -5+ Qulpnt) = 0

c

Assumption (3) also suggests that equation (2) can be truncated to:

© ) O, — k) gol,e + Qulant) = 0

That is, heat fluxes just to the left and just to the right of x. must be known.
Temperature sensors are attached at x = x, such that 0 < z; < z. < 1, and let the
temperature measured by means of the temperature sensors be u(zs,y,t) = u*(y, t).
It is not necessary to have xs being less than x.. Similar problem partitioning can
be generated for 0 < z. < zs < 1. The measured temperatures are used to
retrieve temperatures at the cutting points. Such inverse methods avoid the basic
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difficulties of a direct method since remote temperatures can be measured more
easily and accurately.

For computer simulation purposes, the sensor temperatures are modelled by
the function u*(y,t) = ay(y — 1)?sin(wt). Its maximum value is generated by
the amplitude, «. Its variation with respect to time is generated by the angular
frequency w.

3. Problem Partitioning

Problem partitioning is a DD method applied at the mathematical/physical
problem level. In other words, decomposition is carried out by only considering the
problem at this level [8]. In order to solve the inverse problem given in (1) with the
additional condition available at x = x5, problem partitioning is carried out to pro-
duce three sub-domains, such that each subproblem may define different numerical
algorithms. The three sub-domains are, D; = {(z,y): 0 <z < x5 and 0 <y < 1},
Dy ={(z,y):zs<z<z,and 0<y<1},and D3 ={(z,y):z. <x<1land0<
y < 1}. This problem partitioning removes the unknown source term Q.(y,t) and
the Dirac delta function associated with it from the differential equations. The
three sub-problems can be written as follows:

SPi: G = Z(k(u)%) + £&(k(w)5%E) € Dy
SUbjeCt to U](l',y,O) = Ui(l’,y), ul(O»yvt) = Bo(y,t),
u1(@s,y,t) = u'(y,t), ui(z,0,t) = Co(z,1), wi(z,1,t) = Ci(, ).

SPy: B = Z(k(us)%2) + £(k(u2)%2) € Dy
subject to ua(z,y,0) = Ui(z,y), ue(zs,y,t) = u*(y,t),
SUQ(azs,y,t) = 8u1(g57y’t) ,UQ(H?,O,t) = C()(.I',t), ’UQ(.Z', lvt) = Cl(mat)'

T T

SPs: %3- = é%(k(’u,g,)%f‘) + (%(k(us)%l) € Dy
SUbjeCt to u3(xay» 0) = U‘i(xay)a u3(m6ay’t) = ’U/Q(.Tc,y, t)a
us(l,y,t) = B1(y, t), us(z,0,t) = Co(x,t), us(z,1,y) = Ci(x,t).

Since the temperature values are given at y = 0, y = 1, £ = 0 and there are
temperature sensors located at * = x,, Dirichlet boundary conditions are defined
at the boundary of D;. Solutions of the differential equation provide the required
data to calculate the heat flux g—’;‘(:cs,y, t). Therefore, with the knowledge of the
temperatures u(zs,y,t) acquired by the temperature sensors at x = x,, an initial
value problem can be formulated in Ds. u(z.,y,t) values are obtained by solving
this initial value problem. Finally, with the calculated temperatures u(z.,y,t),
another Dirichlet problem can be formulated in D3. The above three subproblems
are well-defined [1] [12], and a unique solution exists for each of them. The direct
sum of these subproblem solutions gives the temperature distribution of the original
problem, i.e.

ul(xayat), T e Dl
(4) u(z,y, t) = u?(xayat)7 z € Dy
u3(x’yat)» T e D3
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3.1. Numerical schemes. To solve the problems in SP; and SPs a first order
forward difference approximation of the temporal derivative and a second order FV
approximation of the spatial derivatives are used. A five-point explicit scheme is
produced from the approximation. Dropping the subscript used in denoting the
sub-domains, the explicit scheme for the sub-domains D, and D3 can be written
as,

U 1J+Txa( )u£+)1] (l—rmagn)—rzbgn)—ryc(-")*rydgvn))u(vnv)%—

J
()() ()()
(5) rydj ij—1 T Ty 27;+1

(n+1) b(")

ul]

where (i,7) denotes the (i,j)-th grid point, r, = (AA;)Z, Ty = (—AA?#, aEn) =

MELERE gl o BT ) KRR ) ML denotes
the time-step, At is the step size along the temporal axis and Ax Ay are the grid
spacing along the spatial axis z, y, respectively. The initial value problem in SP; is
solved by employing a second order Euler Predictor-Corrector (P-C) method along
the x-axis for each time-step. Again, the spatial derivatives are discretised using
second order FV approximations and the time derivative with a first order finite

difference approximation. The two step P-C method can be written as:

o (2) () (1) - (0)r s,

here v = 2% = u ) = ( u Y u . ) d
wher arr £ i( v (3 = Z(k(w)5h) - K (up?) ) *F
ff=f ( :j . A second order spatially accurate solution may be obtained for

each of the three subproblems. Therefore, it is expected to have a second order
spatially accurate global solution for the inverse problem (1). The effect of the local
truncation error for SP, is minimised because of the small size of the sub-domain
which usually consists of only a few Euler P-C steps. All experiments carried out
gave stable results as long as the CFL condition r,, 7, < 0.25 was satisfied.

3.2. Numerical results. Numerical results are obtained for equation (1) with
zs = 0.5, z. = 0.6, Ui(x,y) = 0, By(y,t) = 0, B1(y,t) = 0, Co(z,t) = 0 and
Ci(z,t) = 0. Sensor points are modelled as u*(y,t) = ay(y — 1)?sin(wt), with

= 0.1 and w = 27. Non-linear heat conductivity is given by k(u) = ﬁ
Temperature distributions are shown for time t = 0 to ¢t = 0.5 in Figure 1. The
retrieved source/sink strength is also shown, Figure 2, it reflects the shape of the
function used in the modelling of sensor temperatures, i.e. a sine function in time.

4. Exploiting Parallelism

Exploiting the parallel properties of an algorithm provides several key
advantages. One of them is the expectation of a very fast execution of the algorithm.
This in turn facilitates the real-time simulation (e.g. one-minute of temperature
evolution is calculated using no more than one minute of computation time ).
Another added advantage is that very large problem sizes (i.e. problem sizes that
may not fit into the memory of a single-processing element) can be solved by using
the total memory available from all the processors.
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FIGURE 1. Temperature distributions from ¢ = 0.1 to ¢t = 0.5 and
a 1D view at £ = 0.1.
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FIGURE 2. Source/Sink strength.

4.1. Domain-data parallelism. There are different ways of partitioning
existing serial algorithms in order to utilise parallel and in particular distributed
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environments. An advantage of using the DD approach to solve inverse problems is
that the technique naturally provides a coarse-grained parallel algorithm. In other-
words, each sub-domain generated due to the application of DD can be mapped
directly to a processor and these sub-problems may be solved concurrently. In
this paper this concept is referred to as “domain parallelism”. The calculation
performed in sub-domain D, is much smaller (due to sensor and cutter points
being very close to each other) than D; and Dj. Also, calculations in D; can be
carried out independently and gradients from D, and D3 at x = z. are used to
retrieve the source term. Considering these details, the calculations in sub-domains
D5 and D3 are computed in one processor and the calculations in D are computed
in another. This minimises the communication and gives a better load balance
among processors. That is, the domain parallelism requires two processors to solve
the inverse problem defined by (1).

Domain parallelism has an obvious limitation in that it does not scale with an
increasing number of processors. For the above cutting problem, only two processors
are required. Data partitioning may be carried out within each sub-domain. In this
paper we refer to this as “domain-data parallelism”. In partitioning the data the
number of grid-points is divided amongst the processors as evenly as possible. If
N denotes the total number of grid points and P denotes the number of processors
and if % is not an integer, then some processors will have more grid points than
others. As a result, the remaining data is distributed as evenly as possible so as to
reduce the load imbalance amongst the processors.

4.2. Parallel results. The domain-data parallel version of the numerical
algorithm is implemented using FORTRAN 77 with MPI directives. The parallel
implementation is tested using a loosely coupled and tightly coupled multi-processor
environments. The loosely coupled environment used is, a set of Sun Sparc 5
workstations connected together by an Ethernet network. The SGI Origin 2000
machine describe the tightly coupled multi-processor environment. Performance of
the parallel implementation on the two platforms is shown in Figure 3 and shows
that, the trend is similar for both platforms. Differences in speedups between the
platforms, appear significant for smaller problem sizes (e.g., for 10000 and 20000
mesh points). This is due to the differences in communication startup latencies
and message transfer times between the platforms. The Origin 2000 has a very low
startup latency and message transfer times relative to a network of Sun Sparc 5
stations. This difference becomes less significant with the larger problem sizes (e.g.,
for 80000 mesh points).

5. Conclusions

The use of a numerical algorithm developed by applying DD to the problem
domain, in order to retrieve heat source/sink at the cutter and the calculation of
the temperature distribution is presented. It is shown that good parallelism can
be exploited from the DD based algorithm by using domain-data partitioning as
the parallelisation strategy. MPI is used to investigate the parallel performance of
the domain-data parallel version of the algorithm in a loosely coupled and tightly
coupled multi-processor environments. The parallel performance results show that
domain-data parallelism can be utilised effectively in both network clusters and
tightly coupled multiprocessor machines.
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FIGURE 3. Parallel results for Origin 2000 and Sun Sparc 5s.
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